BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
In northeastern North America, alpine snowbank (snowbed) communities are rare, highly diverse plant assemblages. They form in sheltered sites above treeline where late-lying snow provides insulation from late-season frosts and a longer-lasting source of water. We studied the effects of snowmelt timing and cumulative temperature on the vegetative and flowering phenology of seven common, alpine snowbank species on Mt. Washington, New Hampshire. We observed snowmelt date and plant phenology at 14 alpine snowbank sites over one growing season and collected temperature data using automated dataloggers. We used Pearson correlations to analyze the relationships between snowmelt timing and temperature (i.e., growing degree days) and plant phenology. Snowmelt date was positively correlated with the dates of peak phenophases, and lag time (time between snowmelt and peak phenophase) was negatively correlated with snowmelt date. Snowmelt timing consistently delayed the onset of phenological stages, but later snowmelt had a less-pronounced delay. Plants at later-melting sites experienced higher mean daily temperatures and accumulated growing degree days more quickly, leading to a shorter phenological cycle. Continued monitoring of snowmelt timing, temperature, and the phenology of alpine snowbank plants may provide clues to how climate change will affect alpine areas of northeastern North America, especially in terms of diversity, pollination, and abiotic interactions.
The natural hybrid between Drosera intermedia and D. rotundifolia, now known as D. ×eloisiana (formerly D. ×belezeana), was discovered in Wendell, Franklin County, Massachusetts, in July 2015. Measurements of leaf blade length and width, along with characteristics such as petiole pubescence, anther color, and seed characteristics, confirm these plants as hybrids and form the basis for a key to differentiate between the hybrid and its parent taxa. Discovery of a misfiled herbarium specimen at MASS revealed that this hybrid was collected in eastern Massachusetts in 1980, and comparisons with a specimen from Nova Scotia, Canada, confirm the hybrid from that province. Drosera ×eloisiana is likely more widespread than documented in New England and beyond, and additional discoveries may follow.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere