Katie M. Dugger, Eric D. Forsman, Alan B. Franklin, Raymond J. Davis, Gary C. White, Carl J. Schwarz, Kenneth P. Burnham, James D. Nichols, James E. Hines, Charles B. Yackulic, Paul F. Doherty, Larissa Bailey, Darren A. Clark, Steven H. Ackers, Lawrence S. Andrews, Benjamin Augustine, Brian L. Biswell, Jennifer Blakesley, Peter C. Carlson, Matthew J. Clement, Lowell V. Diller, Elizabeth M. Glenn, Adam Green, Scott A. Gremel, Dale R. Herter, J. Mark Higley, Jeremy Hobson, Rob B. Horn, Kathryn P. Huyvaert, Christopher McCafferty, Trent McDonald, Kevin McDonnell, Gail S. Olson, Janice A. Reid, Jeremy Rockweit, Viviana Ruiz, Jessica Saenz, Stan G. Sovern
The Condor 118 (1), 57-116, (10 December 2015) https://doi.org/10.1650/CONDOR-15-24.1
KEYWORDS: Barred Owl, fecundity, Northern Spotted Owl, occupancy, population change, Strix occidentalis caurina, Strix varia, survival
Estimates of species' vital rates and an understanding of the factors affecting those parameters over time and space can provide crucial information for management and conservation. We used mark–recapture, reproductive output, and territory occupancy data collected during 1985–2013 to evaluate population processes of Northern Spotted Owls (Strix occidentalis caurina) in 11 study areas in Washington, Oregon, and northern California, USA. We estimated apparent survival, fecundity, recruitment, rate of population change, and local extinction and colonization rates, and investigated relationships between these parameters and the amount of suitable habitat, local and regional variation in meteorological conditions, and competition with Barred Owls (Strix varia). Data were analyzed for each area separately and in a meta-analysis of all areas combined, following a strict protocol for data collection, preparation, and analysis. We used mixed effects linear models for analyses of fecundity, Cormack-Jolly-Seber open population models for analyses of apparent annual survival (φ), and a reparameterization of the Jolly-Seber capture–recapture model (i.e. reverse Jolly-Seber; RJS) to estimate annual rates of population change (λRJS) and recruitment. We also modeled territory occupancy dynamics of Northern Spotted Owls and Barred Owls in each study area using 2-species occupancy models. Estimated mean annual rates of population change (λ) suggested that Spotted Owl populations declined from 1.2% to 8.4% per year depending on the study area. The weighted mean estimate of λ for all study areas was 0.962 (± 0.019 SE; 95% CI: 0.925–0.999), indicating an estimated range-wide decline of 3.8% per year from 1985 to 2013. Variation in recruitment rates across the range of the Spotted Owl was best explained by an interaction between total winter precipitation and mean minimum winter temperature. Thus, recruitment rates were highest when both total precipitation (29 cm) and minimum winter temperature (−9.5°C) were lowest. Barred Owl presence was associated with increased local extinction rates of Spotted Owl pairs for all 11 study areas. Habitat covariates were related to extinction rates for Spotted Owl pairs in 8 of 11 study areas, and a greater amount of suitable owl habitat was generally associated with decreased extinction rates. We observed negative effects of Barred Owl presence on colonization rates of Spotted Owl pairs in 5 of 11 study areas. The total amount of suitable Spotted Owl habitat was positively associated with colonization rates in 5 areas, and more habitat disturbance was associated with lower colonization rates in 2 areas. We observed strong declines in derived estimates of occupancy in all study areas. Mean fecundity of females was highest for adults (0.309 ± 0.027 SE), intermediate for 2-yr-olds (0.179 ± 0.040 SE), and lowest for 1-yr-olds (0.065 ± 0.022 SE). The presence of Barred Owls and habitat covariates explained little of the temporal variation in fecundity in most study areas. Climate covariates occurred in competitive fecundity models in 8 of 11 study areas, but support for these relationships was generally weak. The fecundity meta-analysis resulted in 6 competitive models, all of which included the additive effects of geographic region and annual time variation. The 2 top-ranked models also weakly supported the additive negative effects of the amount of suitable core area habitat, Barred Owl presence, and the amount of edge habitat on fecundity. We found strong support for a negative effect of Barred Owl presence on apparent survival of Spotted Owls in 10 of 11 study areas, but found few strong effects of habitat on survival at the study area scale. Climate covariates occurred in top or competitive survival models for 10 of 11 study areas, and in most cases the relationships were as predicte