Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Few studies on herbicide resistance report data to establish unambiguously the correlation between genotype and phenotype. Here we report on the importance of the EPSPS prolyl106 point mutation to serine (P106S) in conferring resistance to glyphosate in a goosegrass population from Davao, Mindanao Island, the Philippines (Davao). Initial rate-response studies showed clear survivors within the Davao population at glyphosate rates that completely controlled the standard sensitive goosegrass population (STD1). Assessment of potential resistance mechanisms identified the presence of P106S mutant individuals in the Davao population. Polymerase chain reaction (PCR) amplification of specific alleles (PASA) analysis established that the mixed-resistant Davao population was comprised of 39.1% homozygous proline wild-type (PP106), 3.3% heterozygous serine mutant (PS106), and 57.6% homozygous serine mutant (SS106) genotypes. Further rate-response studies on plants with a predetermined genotype estimated the Davao SS106 individuals to be approximately 2-fold more resistant to glyphosate compared to Davao PP106 individuals. Extensive analysis at different goosegrass growth stages and glyphosate rates established strong correlation (P < 0.001) between presence of P106S in EPSPS and the resistant phenotype. Importantly, no differences in the pattern of absorbed or translocated 14C–glyphosate were observed between PP106 and SS106 Davao genotypes or Davao and STD1 individuals, suggesting that glyphosate resistance in the Davao population was attributable to an altered target site mechanism. This study demonstrates that whilst P106S in EPSPS confers a moderate resistance level to glyphosate, the mechanism is sufficient to endow glyphosate failure at the recommended field rates.
Ten years of Oregon Seed Certification Service (OSCS) preharvest field inspections converted from a nonspatial database to a geographic information system (GIS) were analyzed for patterns in spatial distribution of occurrence and severity of the 36 most common weeds of grass seed crops. This was done under the assumptions that those patterns would be primarily consequences of interactions among farming practices, soil properties, and biological traits of the weeds, and that improved understanding of the interactions would benefit the grass seed industry. Kriging, Ripley's K-function, and both Moran's I spatial autocorrelation and Getis-Ord General G high/low clustering using the multiple fixed distance band option all produced roughly similar classifications of weeds possessing strongest and weakest spatial clustering patterns. When Moran's I and General G analyses of maximum weed severity observed within individual fields over the life of stands were conducted using the inverse distance weighting option, however, results were highly sensitive to the presence of a small number of overlapping fields in the 10-yr record. Addition of any offset in the range from 6 to 6,437 m to measured distances between field centroids in inverse distance weighting matrices removed this sensitivity, and produced results closely matching those for the multiple fixed distance band method. Clustering was significant for maximum severity within fields over the 10-yr period for all 43 weeds and in 78% of single-year analyses. The remaining 22% of single-year cases showed random rather than dispersed distribution patterns. In decreasing order, weeds with strongest inverse-distance spatial autocorrelation were German velvetgrass, field bindweed, roughstalk bluegrass, annual bluegrass, orchardgrass, common velvetgrass, Italian ryegrass, Agrostis spp., and perennial ryegrass. Of these nine weeds, distance for peak spatial autocorrelation ranged from 2 km for Agrostis spp. to 34 km for common velvetgrass. Weeds with stronger spatial autocorrelation had greater range between distance of peak spatial autocorrelation and maximum range of significance. Z-scores for General G high/low clustering were substantially lower than corresponding values for Moran's I spatial autocorrelation, although the same two weeds (German velvetgrass and field bindweed) showed strongest clustering using both measures. Simultaneous patterns in Moran's I and General G implied that management practices relatively ineffective in controlling weeds usually played a greater role in causing weeds to cluster than highly effective practices, although both types of practices impacted Italian ryegrass distribution. Distance of peak high/low clustering among perennial weeds was smallest (1 to 3 km) for Canada thistle, field bindweed, Agrostis spp., and western wildcucumber, likely indicating that these weeds occurred in patchy infestations extending across neighboring fields. Although both wild carrot and field bindweed doubled in average severity over the period from 1994 to 2003, wild carrot was the only weed clearly undergoing an increase in spatial autocorrelation. Soil chemical and physical properties and dummy variables for soil type and crop explained small but significant portions of total variance in redundancy and canonical correspondence analysis of weed occurrence and severity. Fitch-Morgoliash tree diagrams and Redundancy Analysis (RDA) and Canonical Correspondence Analysis (CCA) ordinations revealed substantial differences among soil types in weed occurrence and severity. Gi* local hot-spot clustering combined with feature class to raster conversion protected grower expectations of confidentiality while describing dominant spatial features of weed distribution patterns in maps released to the public.
Purple-leaf button weed and Indian heliotrope are widespread and common weed species of rain-fed rice in many tropical countries. The influence of various environmental factors on seed germination of these species was studied. Seeds of both species germinated at a range of alternating temperatures (25/15, 30/20, and 35/25 C day/night). Germination of purple-leaf button weed was similar among light conditions after an after-ripening period of 3 mo, whereas germination of Indian heliotrope was always greater in light. Seed germination of both species was not affected by a high level of salt and a range of pH between 5 and 9, but was sensitive to high degrees of water stress. Seed burial strongly inhibited germination and emergence of these species. Seedling emergence of purple-leaf button weed (82 to 86%) and Indian heliotrope (70%) was optimal when seeds were sown in the top 0.2-cm soil layer. A burial depth of 2 cm completely inhibited emergence of Indian heliotrope, whereas, for purple-leaf button weed, this depth was 5 cm. Most of these seeds germinated, however, when brought to the soil surface. The information gained from this study would help in predicting the potential of these species for spreading into new areas, and could contribute to their control.
Nomenclature: Purple-leaf button weed, Borreria ocymoides (Burm. f.) Dc.; Indian heliotrope, Heliotropium indicum L. HEIN; rice, Oryza sativa L.
Effective weed seedbank management requires mechanistic understanding of ecological determinants of seed persistence in the soil seedbank. Chemical and physical defense of common lambsquarters, field pennycress, giant foxtail, kochia, velvetleaf, and yellow foxtail seeds were quantified in relation to short- and long-term seedbank persistence. Seed content of ortho-dihydroxyphenols (o-DHP), a class of putative seed defense compounds, varied more than threefold between the least protected species (common lambsquarters, 9.2 µg g seed−1) and the most protected species (kochia, 34.1 µg g seed−1). Seed o-DHP was inversely related (r = −0.77, P < 0.001) to seed half-life in the soil and to short-term seed persistence in burial assays (r = −0.82, P < 0.05). The relative importance of chemical seed protection in comparison to physical seed protection, as represented by the ratio of seed o-DHP concentration to seed coat thickness, decreased linearly with increasing short-term seed persistence (r = −0.96, P < 0.01) and nonlinearly with increasing long-term seed persistence in the soil seedbank (y = 0.16 0.21/(0.0432 x), R2 = 0.99, P < 0.001). Mechanical damage to the seed coat, via piercing, slicing, or grinding treatments, increased short-term mortality during burial for all six species. Mortality of pierced seeds was negatively associated (r = −0.35, P < 0.05) with seed phenol concentration and positively associated with seed half-life (r = 0.42, P < 0.01) and seed coat thickness (r = 0.36, P < 0.05). Seed phenolics, as a class, supported the results for o-DHPs. Overall, these findings suggest a potential weakness, with respect to seedbank management, in the way weed seed defenses are constructed. Weed species with transient seedbanks appear to invest more in chemical defense than those species with highly persistent seedbanks. As a result, seeds in the latter category are relatively more dependent upon physical seed protection for persistence in the soil seedbank, and more vulnerable to management tactics that reduce the physical integrity of the weed seed coat.
Biotypes of common lambsquarters with tolerance to glyphosate have been identified in a number of states, but little is known about their fitness characteristics. Field and greenhouse studies were conducted to characterize the response of selected glyphosate-tolerant common lambsquarters biotypes to glyphosate, and also their biological and reproductive characteristics. In a greenhouse dose-response study, GR50 and GR90 values for four tolerant biotypes ranged from 1.48 to 3.22 and 8.73 to 18.7 kg ae ha−1, respectively, compared to 0.57 and 2.39 kg ae ha−1, respectively, for a glyphosate-sensitive biotype. In a field dose-response study, the GR50 and GR90 values were 0.06 and 0.48 kg ae ha−1, respectively, for a tolerant biotype, compared to 0.036 and 0.19 kg ae ha−1, respectively, for the sensitive biotype. The growth rate, time until flowering, and seed production of eight tolerant and two sensitive biotypes was evaluated in a field study. The tolerant biotypes grew taller, amassed more leaf area and dry weight, and advanced through growth stages more rapidly than sensitive biotypes during the early portion of the growing season. The tolerant biotypes were taller than sensitive biotypes at 6 and 10 wk after transplanting, but had lower dry weight at maturity. Tolerant biotypes initiated flower primordia approximately 6 to 8 wk after transplanting, whereas sensitive biotypes required 12 wk. However, no apparent fitness penalties were observed in glyphosate-tolerant biotypes based on seed-production estimates.
Nomenclature: Glyphosate; common lambsquarters, Chenopodium album L.
Morningglories are troublesome weeds in row crops and other agricultural areas throughout the United States. Plants of pitted morningglory, sharppod morningglory, and a fertile “hybrid” between pitted and sharppod morningglory (hybrid morningglory), were compared with cypressvine, ivyleaf, palmleaf, purple moonflower, red, and smallflower morningglories in greenhouse studies at Stoneville, MS. Plants from each of 76 accessions were studied for number of nodes to first internode elongation; stem color and pubescence; leaf area and dry weight of first four full expanded leaves; leaf blade pubescence on abaxial and adaxial surfaces and margins; leaf color, shape, and lobing; petiole length, color, and pubescence; sepal length, color, and pubescence; and corolla color, diameter, and length. Among these morningglories, the most diverse traits were pubescence and flower characteristics. Greatest morphological diversity was among hybrid morningglory accessions because characteristics were intermediate to pitted morningglory and sharppod morningglory accessions. Sharppod morningglory had five nodes to first internode elongation compared to three nodes in pitted and hybrid morningglory. Corolla color was white (90%) or white with faint pink veins (10%) in pitted morningglory, lavender (100%) in sharppod morningglory, and varied from pinkish lavender (45%), lavender (38%), white (12%), to white with pink veins (5%) in hybrid morningglory accessions. Pitted, red, and smallflower morningglory corolla diameters were not only smaller, but less variable in size than cypressvine, hybrid, ivyleaf, palmleaf, purple moonflower, and sharppod morningglories. Corolla diameter and lengths were most variable in sharppod morningglory accessions when compared to other morningglory accessions. The sepal tip shape was broader (broadly acute to obtuse) in palmleaf and sharppod than in hybrid, pitted, or other morningglories (acute to narrowly acute). In future studies, these morphological traits will be compared to determine if any are correlated with glyphosate sensitivity.
Nomenclature: Cypressvine morningglory, I. quamoclit L. IPOQU; hybrid morningglory, Ipomoea × leucantha Jacq.; ivyleaf morningglory, I. hederacea (L.) Jacq. IPOHE; palmleaf morningglory, I. wrightii Gray IPOWR; pitted morningglory, I. lacunosa L. IPOLA; purple moonflower, I. turbinata L. CLYMU; red morningglory, I. coccinea L. IPOCC; sharppod morningglory, I. cordatotriloba Dennst. IPOTC; smallflower morningglory, Jacquemontia tamnifolia (L.) Gresb. IAQTA.
Goosegrass is considered one of the most important grassy weeds of rice, particularly in rain-fed environments. Experiments were conducted in laboratory, screenhouse, and field to study the germination ecology of goosegrass seeds. In the laboratory, germination was greater at higher alternating temperatures (30/20 and 35/25 C) than at the lowest alternating temperatures (25/15 C). An after-ripening period of at least 3 mo was required to improve the germination of goosegrass. Germination was tolerant of salt stress but sensitive to a high degree of water stress. A pH range of 5 to 10 did not influence seed germination (92 to 95%). In the screenhouse study, seedling emergence of goosegrass was greatest (82%) for seeds placed on the soil surface, but decreased exponentially after that, no seedlings emerged at a burial depth of 8 cm. Seedling emergence and seedling dry matter declined markedly with the addition of crop residue to the soil surface at rates equivalent to 4 to 6 ton (t) ha−1. In the field, seedling emergence of goosegrass was greater under zero-till (ZT; 16 to 18%) than under minimum tillage (MINT; 8 to 11%). Because seedling emergence was greater from surface-sown seeds and emergence was favored by ZT, this species is likely to become a problematic weed in ZT systems. The information gained from this study could be used in developing effective weed management strategies.
The noxious weed Benghal dayflower has become a severely troublesome agricultural weed in Georgia in the southeastern Unite States, and there are indications that it is moving northward. Benghal dayflower is glyphosate tolerant and possesses a high degree of reproductive elasticity, making it a formidable threat in many crop systems. The purpose of these experiments was to develop the first temperature response profiles for Benghal dayflower, and use them to evaluate whether temperature might limit its northward invasion into North Carolina and adjacent states on the U.S. east coast. Experiments focused on vegetative and early reproductive growth, stages considered crucial for establishment and competitiveness. Exposure to a range of aerial temperatures revealed that Benghal dayflower growth and production of aerial and subterranean reproductive structures were maximized at 30 C, with sharp declines occurring at cooler temperatures. When exposed to differing root temperatures in hydroponics, with a constant aerial temperature, Benghal dayflower growth did not show the same cool temperature sensitivity, but reproductive performance declined when temperatures decreased below about 29 C. The root temperature responses of several other weed species known to thrive in the climate of this geographic area also were determined. Growth of sicklepod, hemp sesbania, and jimsonweed was more sensitive than Benghal dayflower to cool temperatures, whereas the growth response of velvetleaf was similar. Based on the comparison of the Benghal dayflower temperature responses in controlled environments to (1) seasonal air and soil temperatures in the field, and (2) the temperature responses of agronomic weeds known to thrive in the region, it is concluded that cool temperatures will not restrain the northward spread of Benghal dayflower into North Carolina.
The timing of nitrogen (N) fertilizer application may influence germination, emergence, and competitiveness of weeds. Research was conducted to determine the influence of total inorganic soil N (Nit) on the germination, emergence, and growth of five weed species. In a greenhouse experiment, seed of five weed species were exposed to four levels of N, and seed germination was measured. In the field, urea ammonium nitrate (UAN 28%) was applied at multiple rates at three spring timings, and Nit, weed emergence, and growth were measured for 21 to 35 d after application (DAA). Germination of the four dicotyledonous and single grass species was not stimulated by 450 ppmw of N compared with the untreated control. In the field, Nit of 112 or 168 kg N ha−1, measured at 7 and 21 DAA, was always greater than Nit in the untreated control. The duration of the available N pulse in the upper 8 cm of soil was dependent on N application rate and timing. At 8 to 16 cm of soil depth, Nit was greater when 168 kg N ha−1 was applied compared with no N at 21 and 35 DAA in 2004. Emergence of common lambsquarters increased as N application rate increased for each application date in 2003, but not in 2004. Emergence of ladysthumb increased with N application rate for the April 15, 2003, date; emergence of giant foxtail increased with N application rate for the April 6, 2004, date. Weed biomass was always greater when 168 kg N ha−1 was applied compared with no N, and at four of six N application dates, when 112 kg N ha−1 was applied. This research shows that spring N fertilizer applications increase Nit and weed growth, but the influence of N on weed emergence is dependent on the weed species, seed source, and environmental conditions.
Nomenclature: Common lambsquarters, Chenopodium album L. CHEAL; ladysthumb, Polygonum persicaria L. POLPE.
Southern and India crabgrass are important grass weeds of rice in many tropical countries. Environmental factors influenced seed germination and seedling emergence of these weeds. Seeds of both species germinated at a range of alternating temperatures (25/15, 30/20, and 35/25 C day/night), though the germination of southern crabgrass was reduced at the lowest alternating temperatures (25/15 C). Light stimulated germination of both species; however, a small proportion of southern crabgrass seeds germinated in the dark. Germination of India crabgrass was influenced to a greater degree by increasing salt and water stresses than was southern crabgrass. Seeds of both species germinated over a wide range of pH between 5 and 10. Seedling emergence of both species (98% for southern crabgrass and 94% for India crabgrass) was greatest for seeds placed on the soil surface. Seed burial depth of 2 cm completely inhibited emergence of India crabgrass, whereas for southern crabgrass, this depth was 8 cm. Knowledge gained from this study is expected to contribute to developing components of integrated weed management strategies for these species.
Nomenclature: India crabgrass, Digitaria longiflora (Retz.) Pers. DIGLO; southern crabgrass, Digitaria ciliaris (Retz.) Koel. DIGSP; rice, Oryza sativa L.
Experiments were conducted to investigate the acclimation of Palmer amaranth to shading. Plants were grown in the field beneath black shade cloths providing 47 and 87% shade and in full sunlight (no shading). All photosynthetic measurements were taken 4 wk after initiating the shade treatments. Photosynthetic rates of Palmer amaranth grown under 47% shade increased with increasing photosynthetic active radiation (PAR) similar to 0% shade-grown plants. Light-saturated photosynthetic rates were predicted beyond the highest measured PAR of 1,200 µmol m−2 s−1 for plants grown under 0 and 47% shade. Plants acclimated to increased shading by decreasing light-saturated photosynthetic rates from 60.5 µmol m−2 s−1 under full sun conditions to 26.4 µmol m−2 s−1 under 87% shade. Plants grown under 87% shade lowered their light compensation point. Rate of increase in plant height was similar among shade treatments. Plants responded to increased shading by a 13 to 44% reduction in leaf appearance rate (leaf number growing degree days [GDD]−1) and a 22 to 63% reduction in main-stem branch appearance rate (main-stem branch number GDD−1) compared with full sunlight. Palmer amaranth specific leaf area increased from 68 to 97 cm2 g−1 as shading increased to 87%. Plants acclimated to 47% shade by increasing total leaf chlorophyll from 22.8 µg cm−2 in full sunlight to 31.7 µg cm−2 when shaded; however, the increase was not significant at 87% shading. Thus, it is concluded that Palmer amaranth shows photosynthetic and morphological acclimation to 87% or less shading.
Nomenclature: Palmer amaranth, Amaranthus palmeri S. Wats. AMAPA.
The phase-out of methyl bromide requires alternative nutsedge management options in vegetable systems. Options that target tuber production, the primary means of reproduction, will be most beneficial. A study was conducted to evaluate the response of purple nutsedge and yellow nutsedge foliar growth and tuber production to a range of glyphosate rates. Glyphosate was applied at six rates between 0.41 and 2.57 kg ae ha−1 to 5-wk-old nutsedge plants with multiple shoots. The rate of glyphosate needed to reduce growth 50% (I50) was similar for purple nutsedge foliar growth (0.58 kg ha−1) and tuber biomass (0.55 kg ha−1). In contrast, I50 for yellow nutsedge foliar growth was 0.73 kg ha−1, which was greater than the I50 for tuber biomass (0.41 kg ha−1). First-order tubers, those directly attached to the initial tuber, had an I50 of 0.70 and 0.44 kg ha−1 of glyphosate for purple nutsedge and yellow nutsedge tuber biomass, respectively. For all higher-order tubers, I50 values ranged from 0.29 to 0.60 and 0.14 to 0.30 kg ha−1 of glyphosate for purple nutsedge and yellow nutsedge tuber biomass, respectively. Glyphosate at 0.74 kg ha−1 prevented fourth-order purple nutsedge and third-order yellow nutsedge tuber production (terminal tubers for yellow nutsedge). Fifth- and sixth-order purple nutsedge tuber production was eliminated by the lowest tested rate of glyphosate (0.41 kg ha−1). Effective nutsedge management options will require consistent control between spring and autumn crops. Glyphosate is economical, poses no herbicide carryover issues to vegetables, and minimizes nutsedge tuber production; therefore, it is a suitable candidate to manage nutsedges.
Nomenclature: Glyphosate; purple nutsedge, Cyperus rotundus L. CYPRO; yellow nutsedge, Cyperus esculentus L. CYPES.
Information on nitrogen fertilizer effects on crop–weed competitive interactions might aid in developing improved weed management programs. A controlled environment study was conducted to examine the effect of three N rates on the competitive ability of four weed species grown with wheat. The four weed species were chosen to represent species that varied in their growth responsiveness to nitrogen (N): Persian darnel (low), Russian thistle (low), redroot pigweed (high), and wild oat (high). Wheat and each weed species were grown in a replacement series design at N rates of 60, 120, and 240 mg N kg−1 soil. The competitive ability of the low N-responsive species, Persian darnel and Russian thistle, was not influenced by N rate, supporting our hypothesis that N rate would have little effect on the competitiveness of species responding minimally to N. Conversely, the competitiveness of the high N-responsive species redroot pigweed progressively improved as N rate increased. However, wild oat competitiveness was unaffected by N fertilizer rate. There is some evidence from this study to suggest that fertilizer management strategies that favor crops over weeds deserve greater attention when weed infestations consist of species known to be highly responsive to higher soil N levels. Information gained in this study will be used to advise farmers of the importance of strategic fertilizer management in terms of both weed management and crop yield.
Nomenclature: Redroot pigweed, Amaranthus retroflexus L. AMARE; wild oat, Avena fatua L. AVEFA; Persian darnel, Lolium persicum Boiss. & Hohen. ex Boiss. LOLPS; wild mustard, Sinapis arvensis L. SINAR; wheat, Triticum aestivum L. ‘AC Barrie’.
2,4-D is often used as a preplant burndown herbicide to help control horseweed and other broadleaf weeds before planting in no-till corn and soybean production. Isolated instances of poor horseweed control have occurred in production fields. The objective of this research was to evaluate the response of various horseweed populations to 2,4-D. In the first study, 478 horseweed populations from Indiana were subjected to 280 g ae ha−1 of 2,4-D amine in the greenhouse. This rate of 2,4-D caused visible injury and prevented all biotypes from forming new leaves for 28 days. There were specific populations where all plants sprayed were alive at 28 days after treatment (DAT), and approximately 10% of all populations had a least one plant that survived 280 g ae ha−1 2,4-D, resumed growth, and produced seed. In a dose-response study, we observed populations with three-fold more tolerance to 2,4-D. The most tolerant population had a GR90 of 513 g ae ha−1 and the most susceptible population had a GR90 of 121 g ae ha−1 based on dry weights. Growth suppression with 2,4-D was not affected by rosette size for rosettes between 0.5 and 10 cm in width.
Additive experiments were performed to determine optimum densities for nematode-suppressive cover crops to extend the benefit from the cover crops by also using them for weed suppression. In a preliminary experiment in 2002, a range of cover-crop densities was evaluated in mixtures with smooth pigweed at 5 plants m−2. Smooth pigweed biomass accumulation was suppressed by cowpea, sunn hemp, and velvetbean at the lowest cover-crop populations (38, 44, and 15 plants m−2, respectively). Based on these results, experiments were conducted in 2003 at two locations to examine the effects of lower cover-crop densities on a higher smooth pigweed population density of 15 plants m−2. Cowpea and velvetbean densities ranged from 10 to 50 plants m−2 and sunn hemp from 20 to 100 plants m−2. In 2003, cowpea density had no effect on smooth pigweed biomass. However, smooth pigweed biomass declined linearly by 51% as sunn hemp density increased to 100 plants m−2. Similarly, as velvetbean densities increased, smooth pigweed biomass decreased showing a linear response at one location and quadratic response at the second location. Maximum suppression of smooth pigweed biomass by velvetbean occurred at the highest cover-crop density (50 plants m−2). Excellent suppression of smooth pigweed at 5 plants m−2 or fewer will result in densities of 38, 44, and 15 plants m−2 of cowpea, sunn hemp, and velvetbean. However, with smooth pigweed at 15 plants m−2, optimum cover-crop densities were not obtained because no suppression was obtained with cowpea, and the lowest weed biomass with sunn hemp and velvetbean occurred with the highest densities used. Therefore, when high smooth pigweed densities are expected, sunn hemp and velvetbean should be used at densities greater than 100 and 50 plants m−2, respectively, and further study with higher densities will be needed to define optima.
Nomenclature: Smooth pigweed, Amaranthus hybridus L. AMACH; cowpea, Vigna unguiculata (L.) Walp. ‘Iron-Clay’; sunn hemp, Crotalaria juncea L. ‘Tropic Sun’; velvetbean, Mucuna deeringiana (Bort.) Merr. and Mucuna pruriens (L.) DC. var. pruriens.
Quinoclamine is an herbicide under development for control of liverwort, a weed common in nursery crops. With respect to liverwort control, quinoclamine has been considered to primarily have POST activity. However, some PRE activity has been reported. Growth media sorption studies with 14C-quinoclamine indicate that only 0.64% of the quinoclamine amount that enters the media remains unadsorbed and thus available to be taken up by established plants or propagules. Computer modeling revealed that a large portion of the surface of the quinoclamine molecule is positively charged, which likely is the reason for its high adsorptivity. In a simulation of PRE activity, hydroponically grown liverwort and germinating gemmae were exposed to increasing quinoclamine concentrations. Phytotoxicity to both plants and gemmae was obtained with a minimal concentration of 4 to 6 mg L−1. Based upon the projected use rate, and assuming minimal vertical infiltration depth, the theoretical concentration of quinoclamine within the aqueous phase of a pine bark substrate would be approximately 8 mg L−1. In toto, results indicate that the projected use rate will result in sufficient quinoclamine in the aqueous phase of a pine bark substrate to provide PRE control of gemmae propagules as well as to contribute to the efficacy of POST applications to established liverwort.
Nomenclature: Quinoclamine; liverwort, Marchantia polymorpha L.
Robert H. Gulden, Sylvain Lerat, Robert E. Blackshaw, Jeff R. Powell, David J. Levy-Booth, Kari E. Dunfield, Jack T. Trevors, K Peter Pauls, John N. Klironomos, Clarence J. Swanton
This study investigated factors that influence occurrence and persistence of plant DNA in the soil environment in three crop rotations. In each rotation, soil was sampled in May before planting, in July and August while crops were growing, and in October after harvest. Total DNA was recovered from soil samples taken at two different depths in the soil profile and quantified. Three target plant genes (corn CP4 epsps, corn 10-kD Zein, and soybean CP4 epsps) also were quantified in these DNA extracts using species-specific quantitative real-time PCR assays. In general, total plant DNA content in the soil environment was greatest when the crop was growing in the field and decreased rapidly after harvest. Nevertheless, low levels of target plant DNA were often still detectable the following spring. Age of rotation did not influence target DNA quantities found in the soil environment. Data were collected for a combination of 10 location-years, which allowed for estimation of the variance components for six factors including time of sampling, year, location, crop, sampling depth, and herbicide to total and target DNA content in the soil samples. Mean target recombinant DNA content in soil was influenced most strongly by time of sampling and year (85 and 6%, respectively), whereas total soil DNA content was less dynamic and was most strongly influenced by location and year (49 and 25%, respectively). Over the duration of this study, no accumulation of transgenic plant DNA in the soil environment was observed.
Nomenclature: Corn, Zea mays L.; soybean, Glycine max (L.) Merr.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere