BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Annual bluegrass is a pervasive weed on golf courses in the Transition Zone of the United States and is difficult to selectively remove. For years, superintendents have applied glyphosate on dormant zoysiagrass to remove cool-season weeds. In 2007, a population of annual bluegrass in Columbia, MO, was not controlled with glyphosate after more than 10 yr of continuous applications. Greenhouse studies were established to compare the response of suspect glyphosate-resistant (CCMO1) and -susceptible annual bluegrass to glyphosate. Seedling plants were treated with glyphosate from 0 to 6.27 kg ae ha−1. At 21 d after treatment, reductions in biomass for susceptible annual bluegrass reached a maximum at glyphosate rates of 0.78 kg ha−1 or higher. Comparatively, the biomass of CCMO1 plants was only reduced by 50% at 0.78 kg ha−1, and reductions did not exceed 60% at rates up to 6.27 kg ha−1, which is eight times the labeled rate. At rates necessary to reduce plant dry weights by 50%, the resistance factor (RF) for CCMO1 was 5.2. Twenty-one days following biomass assessment, regrowth of plants was non-existent on susceptible plants at 0.78 kg ha−1 glyphosate or above, but CCMO1 plants reached 1.7 cm regrowth at the 6.27 kg ha−1 rate. Based on the regrowth, the RF for CCMO1 was 5.2. Results indicate a new species has been identified with resistance to glyphosate, and this represents the first report of glyphosate resistance in turfgrass.
Saflufenacil (Kixor™) is a new protoporphyrinogen IX oxidase (PPO) inhibiting herbicide for preplant burndown and selective PRE dicot weed control in multiple crops, including corn. The biokinetic properties and the mechanism of selectivity of saflufenacil in corn, black nightshade, and tall morningglory were investigated. After root treatment of plants at the third-leaf stage, the difference in the phytotoxic selectivity of saflufenacil in corn and the weed species has been quantified as approximately 10-fold. The plant species showed similar selectivity after foliar applications; the plant response to saflufenacil was approximately 100-fold more sensitive compared with a root application. PPO enzyme activity in vitro was inhibited by saflufenacil, a 50% inhibition lay in a concentration range from 0.2 to 2.0 nM, with no clear differences between corn and the weed species. Treatments of light-grown plants and dark-grown seedlings with [14C]saflufenacil revealed that the herbicide is rapidly absorbed by root and shoot tissue. The [14C]saflufenacil was distributed within the plant systemically by acropetal and basipetal movement. Systemic [14C]saflufenacil distribution can be explained by the weak acid character of saflufenacil and its metabolic stability in black nightshade and tall morningglory. Metabolism of [14C]saflufenacil in corn was more rapid than in the weeds. In addition, low translocation of root-absorbed [14C]saflufenacil in the corn shoot was observed. It is concluded that rapid metabolism, combined with a low root translocation, support PRE selectivity of saflufenacil in corn.
Johnsongrass is one of the most troublesome weeds of the world and is listed as a noxious weed in Arkansas. Reduced johnsongrass control with the recommended application rate of glyphosate (840 g ae ha−1) was reported in a continuous soybean field near West Memphis, AR, in the fall of 2007. A greenhouse study was conducted (1) to confirm and characterize glyphosate resistance in the johnsongrass biotype from West Memphis and (2) to determine whether resistant and susceptible biotypes have differential glyphosate absorption or translocation. Dose–response studies revealed that the resistant biotype was five- to seven-fold less sensitive to glyphosate than the susceptible biotype. Glyphosate absorption was similar in resistant and susceptible biotypes at 72 h after treatment (HAT). However, the treated leaf of the resistant biotype retained 28 percentage points more absorbed 14C glyphosate compared to the susceptible biotype at 72 HAT. Additionally, the resistant biotype had less 14C glyphosate translocated to the aboveground tissue below the treated leaf and to roots compared to the susceptible biotype at 24 and 72 HAT. Reduced translocation and increased retention of glyphosate in treated leaves is a probable mechanism of resistance in this glyphosate-resistant johnsongrass biotype.
Resistance to glufosinate has been confirmed in glyphosate-resistant Italian ryegrass populations collected in hazelnut orchards in Oregon. Dose–response, ammonia accumulation, and enzyme activity studies were conducted to test the sensitivity of three glyphosate-resistant and three susceptible Italian ryegrass populations to glufosinate. The glufosinate rates required to reduce the growth by 50% (GR50) were 0.15, 0.18, and 0.21 for the control populations C1, C2, and C3, respectively, whereas for the resistant populations OR1, OR2, and OR3, the GR50 values were 0.49, 0.42, and 0.40 kg ai ha−1, respectively, exhibiting an average resistance index of 2.4. The same trend was observed in ammonia accumulation studies between 48 and 96 h after glufosinate treatment where the susceptible populations accumulated on average two times more ammonia than the resistant populations. The glufosinate concentration required to reduce the glutamine synthetase enzyme activity by 50% (I50) was not different for the resistant and susceptible populations. The I50s ranged from 3.1 to 3.6 µM for the resistant populations and from 3.7 to 4.3 µM for the susceptible populations; therefore, an insensitive target site is not responsible for the glufosinate resistance.
Nomenclature: Glufosinate; glyphosate; Italian ryegrass, Lolium perenne L. ssp. multiflorum (Lam.) Husnot LOLMU; hazelnut, Corylus avellana L.
Redstem filaree is a troublesome weed for sugarbeet growers in northern Wyoming and southern Montana. Field studies were conducted in Powell, WY, in 2006 and 2008 to determine the influence of season-long interference of various redstem filaree densities and the duration of interference on sugarbeet. Root and sucrose yield decreased with increasing redstem filaree density. The rectangular hyperbola model with the asymptote (A) bounded at 100% maximum yield reduction characterized the relationship between redstem filaree density and sugarbeet yield reduction. The estimated parameter I (percent yield reduction per unit weed density as density approaches zero) was 5% for root and sucrose yield reduction. Sugarbeet root yield decreased as the duration of redstem filaree interference increased. The critical timing of redstem filaree removal to avoid 5 and 10% root yield reduction was estimated to be 25 and 32 d after sugarbeet emergence, respectively. Redstem filaree interference did not affect the sucrose content percentage. These results demonstrate that redstem filaree is competitive with sugarbeet and should be managed appropriately to reduce negative effects on yield.
Nomenclature: Redstem filaree, Erodium cicutarium (L.) L'Hér. ex Ait. EROCI; sugarbeet, Beta vulgaris L.
Alfalfa is an important forage crop in North America, and it can also be found as a roadside weed in alfalfa-growing regions. Weediness and invasiveness are greatly facilitated by establishment ability, yet little is known about the ability of alfalfa to establish in competitive environments such as roadsides. The primary objective of this study was to estimate the degree of alfalfa establishment without managed cultivation under different seed-dispersal times and disturbance regimes. The study had a split-plot design with two main plots (spring and fall seed dispersal) and five subplots (mowing, soil disturbance, herbicide spray, seedbed, and undisturbed control). The study examined establishment, growth attributes, and reproductive output of alfalfa in response to these treatments. Alfalfa establishment in the undisturbed grass swards ranged between 0.5 and 9.7% (out of the total number of seeds dispersed) across the dispersal times. The density of alfalfa in fall-seeded plots was about 82% lower than in spring-seeded plots. Soil disturbance reduced the density of alfalfa to < 50% of the initial density. Generally, low plant densities were compensated over time by increased numbers of shoots and reproductive units (racemes and pods) per plant. Herbicide application (2,4-D dicamba) effectively controlled all emerged alfalfa plants, but in some cases, seedling recruitment was observed in the years following herbicide application. Although mowing did not kill alfalfa plants, mowed plants did not produce mature seeds, and as such, mowing may be useful in restricting the reproductive success and population growth of alfalfa. Overall, it is evident that alfalfa is capable of establishing in competitive environments (such as roadside habitats) and rapidly recovering from moderate disturbances. The results of this study have implications for managing roadside alfalfa and for designing novel trait-confinement protocols for alfalfa.
Nomenclature: 2,4-D; dicamba; alfalfa, Medicago sativa L.
In 2006, Palmer amaranth with confirmed resistance to glyphosate (GLY-R) was not controlled effectively in cotton with pyrithiobac, an acetolactate synthase (ALS)-inhibiting herbicide. Glyphosate at 870 g ae ha−1 or pyrithiobac at 70 g ai ha−1 applied postemergence provided 5 to 28% control of a putative GLY/ALS-R Palmer amaranth biotype in the field. Glyphosate at 6,930 g ha−1 and pyrithiobac at 420 g ha−1 applied alone provided no more than 89 and 65% control 1 to 8 wk after treatment (WAT), respectively. When applied as a tank mixture, glyphosate plus pyrithiobac at 870 70 g ha−1 provided between 16 and 41% control; glyphosate plus pyrithiobac at 6,930 420 g ha−1 controlled the Palmer amaranth in the field 89 to 95%. Dose-response analyses developed from greenhouse data indicated that the estimated glyphosate rates required to produce 50% injury and reduce plant fresh weights by 50% relative to the nontreated control in a suspected GLY/ALS-R Palmer amaranth biotype were 12 and 14 times greater, respectively, than the estimated values for the susceptible (S) biotype. The predicted pyrithiobac rates required to produce the same responses in the putative resistant population were 151 (50% injury) and 563 times (50% fresh weight reduction) greater than the estimated rates for the S biotype. Field and greenhouse analyses confirm that the Palmer amaranth biotype evaluated in both studies is resistant to glyphosate and an ALS-inhibiting herbicide.
Nomenclature: Glyphosate; pyrithiobac; Palmer amaranth, Amaranthus palmeri S. Wats; cotton, Gossypium hirsutum L.
Previous studies have suggested that the reduction in the root/shoot ratio that accompanies the shade avoidance response may reduce the tolerance of individuals to subsequent nutrient or moisture limitations. In this work, we examined the impact of the shade avoidance response on maize seedling growth and development and the response of these plants to a subsequent abiotic stress. Seedlings were grown in a field fertigation system under two light quality environments, ambient and a low red to far-red ratio, which were designed to simulate weed-free and weedy conditions, respectively. This system also enabled the controlled restriction of water and nutrients, which reduced the relative growth rate of the crop and created a secondary stress. Results of this study indicate that, while the shade avoidance response did reduce the root/shoot ratio in maize, this effect did not reduce plant tolerance to subsequent abiotic stress. Rather, the apparent additivity or synergism of shade avoidance and the secondary stressor on yield loss depended on whether the net effect of these two stressors was sufficiently large to shift the population toward the point where reproductive allometry was broken.
Sheep sorrel is an invasive, creeping perennial weed of lowbush blueberry fields that decreases yields and hinders harvest. Much of the basic phenology of sheep sorrel in blueberry fields is unknown and not documented in peer-reviewed journals. Three levels of fertilizer (0, 20, and 40 kg N ha−1) and two levels of hexazinone (0 and 1.92 kg ai ha−1) were applied to three vegetative-year blueberry fields to determine their effects on root and shoot growth, biomass allocation, and seed production of sheep sorrel plants. Hexazinone efficacy varied widely between sites, but suppressed shoot biomass, achene number and weight, and reproductive biomass, as well as the reproductive ∶ shoot biomass ratio. Fertilizer tended to increase achene number and increased sheep sorrel shoot biomass in the absence of hexazinone, but had no effect on achene weight, root biomass, or reproductive biomass. When fertilizer was applied, sheep sorrel allocated resources to sexual reproduction at the expense of vegetative growth.
Many substitutions in the herbicide target enzyme acetohydroxyacid synthase (AHAS) confer whole-plant resistance and may reduce plant fitness. This study was done to determine the impact of different watering and temperature regimes on the germination, growth, and seed production of eastern black nightshade populations resistant (R) to AHAS inhibitors as conferred by an Ala205Val substitution in their AHAS. Growth and reproductive ability of four R and four susceptible (S) populations were determined in growth-cabinet and greenhouse studies. The R populations had lower total berry and viable seed production per plant than S under optimal conditions because of slower berry maturation. Seed production of both S and R populations decreased under lower or higher than optimal watering regimes; however, this reduction was more pronounced for the S populations so that seed production was comparable across S and R. The R populations had significantly higher germination and vegetative growth under cooler alternating temperature regimes. Although there were no differences between R and S plants under stress conditions, under optimal growth conditions, the Ala205Val substitution comes at a significant cost in eastern black nightshade. Under optimal growth conditions and in the absence of herbicide selection, S populations should eventually dominate over R; however, the lack of fitness differences under stress conditions could enhance the persistence of the R individuals.
Nomenclature: Eastern black nightshade, Solanum ptychanthum Dun. SOLPT.
Goatsrue is a member of the Fabaceae family, native to Europe and western Asia. It contains the toxic alkaloid galegine. The objective of the study was to describe galegine concentration in aboveground goatsrue plant parts and total galegine pools over phenological growth stages. Twenty goatsrue plants at four locations were selected and a stalk was harvested from each at five stages of phenological development and separated into parts. Plant parts were freeze-dried, ground, and analyzed with liquid chromatography/mass spectrometry. Galegine concentration was significantly different in plant tissues; reproductive tissues had the highest levels of galegine (7 mg g−1), followed by leaf (4 mg g−1) and finally stem (1 mg g−1) tissues. Galegine concentration and pools varied over plant tissues and phenological growth stages. Galegine pools (dry weight by concentration) or the total amount of galegine per stalk were lowest at the vegetative growth stage (2 mg stalk−1) and increased until reaching a maximum at the immature pod stage (91 mg stalk−1). The pools decreased nearly in half (48 mg stalk−1) by the mature seed stage. Like galegine pools, galegine concentration also reached a maximum at the immature pod stage (4 mg g−1), and decreased by nearly half by the mature seed stage (2 mg g−1). The increased levels of galegine pools at immature pod stage corresponds with the time of meadow hay harvest, implying that goatsrue is potentially most toxic at the phenological stage when it is likely to be harvested as a contaminant in meadow hay.
Nomenclature: Goatsrue, Galega officinalis L. GAGOF; galegine, 2-(3-methylbut-2-enyl)guanidine.
Barnyardgrass biotypes resistant (R) to propanil (PR) or clomazone (CR) have been confirmed in rice production systems in Arkansas. However, it is not clear whether resistance to these herbicides impose any fitness cost on the R biotypes compared to susceptible barnyardgrass (S ). The overall objective of this experiment was to determine if the growth and competitiveness of barnyardgrass is altered by resistance to propanil or clomazone and to establish a competitive hierarchy among the S, PR, and CR biotypes. A replacement series study was conducted in a greenhouse using five proportions of S and R biotypes (0 ∶ 100, 25 ∶ 75, 50 ∶ 50, 75 ∶ 25, and 100 ∶ 0). The study was carried out in a completely randomized design (CRD) with four replications. The variables, including plant height, number of tillers, number of leaves, and shoot dry weight, were used for quantifying the differences in competitive abilities. Replacement series indices were calculated to explore the competitiveness. Expected (He) and observed (Ho) values for relative yield (RY) and relative yield total (RYT) were compared for number of tillers, number of leaves, and shoot dry weight for each biotype comparison. Other replacement series indices including competitive ratio (CR), relative crowding coefficient (RCC), and aggressiveness index (AI) also were calculated for these variables. The results showed that there were no major differences among the S and R biotypes for these variables, indicating that in the absence of selection pressure, resistance to propanil or clomazone does not influence the growth and competitiveness of barnyardgrass. The findings will be useful for predicting the dynamics of resistant populations in the absence of herbicide selection and for designing suitable management strategies.
Barnyardgrass is one of the most problematic weeds in Arkansas, and with the documentation of herbicide-resistant biotypes, there is a need to gain a detailed understanding of its ecology. In particular, knowledge on barnyardgrass seedbank size and emergence pattern is vital. An extensive seedbank survey was carried out in 2008 in 12 counties in eastern Arkansas to determine barnyardgrass seedbank size across the region. There was a great variability in seedbank size with a maximum of 215,000 seeds m−2. Among the fields surveyed, barnyardgrass seedbank was found only in 7% of the cotton fields, while it was 22 and 20%, respectively, for rice and soybean. To examine the emergence pattern of barnyardgrass, experiments were conducted in Rohwer (two sites), Stuttgart (one site), and Fayetteville (one site), Arkansas in 2008 and 2009. In each site, barnyardgrass emergence was quantified from naturally occurring seedbanks. Barnyardgrass exhibited an extended period of emergence with days to 100% emergence ranging from 99 to 165 across sites and years. Nevertheless, effective management may be achieved by targeting the peak emergence periods, which range from mid-April to mid-June in Arkansas. The four-parameter Weibull model provided a better fit to the cumulative emergence data. However, the thermal time (growing degree days, GDDs) or hydrothermal time (HTT) models did not predict barnyardgrass emergence any better than calendar days, perhaps because of the inherent variations associated with natural seedbanks. This study establishes seedbank size and general emergence pattern for barnyardgrass in Arkansas. Additionally, these results will be useful for parameterizing herbicide-resistance simulation models for barnyardgrass.
The genetic diversity of 39 clones of common reed originating from different geographical areas of Iran were evaluated using morphological and RAPD analyses. High level of morphological variation was observed among clones. The 16 primers used in this study amplified 149 scorable RAPD loci among which 123 were polymorphic (83.1%). A dendrogram was prepared on the basis of a similarity matrix of RAPD data using the unweighted pair-group method with arithmetic averages (UPGMA) algorithm and separated the 39 clones into four groups, which mainly were in accordance with geographical origins. The results of the morphological comparison mostly corresponded with the results of RAPD analysis. It is possible that these variations among clones will affect successful management of common reed using chemical or the other methods of control.
Nomenclature: Common reed, Phragmites australis (Cav.) Trin. ex Steud.
The molecular basis of resistance to tribenuron-methyl, an acetolactate synthase (ALS)–inhibiting herbicide was investigated in four resistant (R) and three susceptible (S) flixweed populations. The resistance level in the R populations was assessed in whole-plant pot experiments in a greenhouse, and resistance indices ranged from 723 to 1422. The ALS genes of the three S populations and four R populations were cloned and sequenced, and the full coding sequence of the ALS gene of flixweed was 2,004 bp. The sequences of the ALS genes of the three S populations collected from Shaanxi, Gansu, and Tianjin were identical. Comparison of the ALS gene sequences of the S and R populations with Arabidopsis revealed that proline at position 197 of the ALS gene was substituted by leucine in R population SSX-2, by alanine in R population SSX-3, and by serine in R populations TJ-2 and GS-2. In another study of two R flixweed populations from Hebei and Shaanxi, resistance was also related to mutation at position 197 of the ALS gene. Both studies confirmed tribenuron-methyl resistance in flixweed in China, with the resistance mechanism being conferred by specific ALS point mutations at amino acid position 197.
Integrated weed management tactics are necessary to develop cropping systems that enhance soil quality using conservation tillage and reduced herbicide or organic weed management. In this study, we varied planting and termination date of two cereal rye cultivars (‘Aroostook’ and ‘Wheeler’) and a rye/hairy vetch mixture to evaluate cover-crop biomass production and subsequent weed suppression in no-till planted soybean. Cover crops were killed with a burn-down herbicide and roller-crimper and the weed-suppressive effects of the remaining mulch were studied. Cover-crop biomass increased approximately 2,000 kg ha−1 from latest to earliest fall planting dates (August 25–October 15) and for each 10-d incremental delay in spring termination date (May 1–June 1). Biomass accumulation for cereal rye was best estimated using a thermal-based model that separated the effects of fall and spring heat units. Cultivars differed in their total biomass accumulation; however, once established, their growth rates were similar, suggesting the difference was mainly due to the earlier emergence of Aroostook rye. The earlier emergence of Aroostook rye may have explained its greater weed suppression than Wheeler, whereas the rye/hairy vetch mixture was intermediate between the two rye cultivars. Delaying cover-crop termination reduced weed density, especially for early- and late-emerging summer annual weeds in 2006. Yellow nutsedge was not influenced by cover-crop type or the timing of cover-crop management. We found that the degree of synchrony between weed species emergence and accumulated cover-crop biomass played an important role in defining the extent of weed suppression.
The introduction of herbicide-resistant crops and postemergence herbicides with a wide action spectrum shifted the research focus from how to when crops should be treated. To maximize net return of herbicide applications, the evolution of weed–crop competition over time must be considered and its effects quantified. A model for predicting the yield trend in relation to weed removal time, considering emergence dynamics and density, was tested on data from glyphosate-resistant soybean grown in cropping systems in Italy and Argentina. Despite an ample variation of weed emergence dynamics and weed load in the four trials, the model satisfactorily predicted yield loss evolution. The estimated optimum time for weed control (OTWC) varied from about 18 d after soybean emergence in Argentina to 20 to 23 d in Italy, with time windows for spraying ranging from 14 to 28 d. Within these limits a single glyphosate application ensures good weed control at low cost and avoids side effects like the more probable unfavorable weed flora evolution with double applications and the presence of residues in grains. Despite the apparent simplicity of weed control based on nonselective herbicides, the study outlines that many variables have to be considered to optimize weed management, particularly for the time evolution of the infestation and, subsequently, a proper timing of herbicide application.
The effect of herbicide rates on weed control and crop yield is the subject of countless and ongoing research projects. Weed seed banks receive very little attention in comparison. The seed bank resulting from 3 yr (2006 to 2008) of single herbicide rates in a cropping system where glyphosate/glufosinate and corn/soybean were rotated or not was evaluated in a field located in St-Augustin-de-Desmaures, Québec, Canada. Field plots under conventional tillage were seeded in corn every year, or corn and soybean (1 yr). These plots received the same herbicide every year or various glyphosate/glufosinate 3-yr sequences. Subplots were sprayed with a single POST application of the recommended rate of glyphosate (900 g ae ha−1) or glufosinate (500 g ai ha−1) or lower rates. Subplots received the same full (1.0×, recommended) or reduced (0.5×, 0.75×) rate every year. After crop harvest in 2008, soil cores were extracted and the weed seed bank was evaluated. Including soybean in the cropping system resulted in lower seed banks compared to those under continuous corn cropping. Including glufosinate in a glyphosate herbicide sequence increased weed seed banks due to the lower efficacy of the glufosinate rates tested at reducing the seed bank of annual grasses. Higher herbicide rates translated into lower seed banks, up to a certain rate. After 3 yr, the lowest seed bank (full glyphosate rates every year) still had 4,339 ± 836 seeds m−2 and was higher than the initial seed bank (2,826 ± 724 seeds m−2).
Growing crops that exhibit a high level of competition with weeds increases opportunities to practice integrated weed management and reduce herbicide inputs. The recent development and market dominance of hybrid canola cultivars provides an opportunity to reassess the relative competitive ability of canola cultivars with small-grain cereals. Direct-seeded (no-till) experiments were conducted at five western Canada locations from 2006 to 2008 to compare the competitive ability of canola cultivars vs. small-grain cereals. The relative competitive ability of the species and cultivars was determined by assessing monocot and dicot weed biomass at different times throughout the growing season as well as oat (simulated weed) seed production. Under most conditions, but especially under warm and relatively dry environments, barley cultivars had the greatest relative competitive ability. Rye and triticale were also highly competitive species under most environmental conditions. Canada Prairie Spring Red wheat and Canada Western Red Spring wheat cultivars usually were the least competitive cereal crops, but there were exceptions in some environments. Canola hybrids were more competitive than open-pollinated canola cultivars. More importantly, under cool, low growing degree day conditions, canola hybrids were as competitive as barley, especially with dicot weeds. Under most conditions, hybrid canola growers on the Canadian Prairies are well advised to avoid the additional selection pressure inherent with a second in-crop herbicide application. Combining competitive cultivars of any species with optimal agronomic practices that facilitate crop health will enhance cropping system sustainability and allow growers to extend the life of their valuable herbicide tools.
Nomenclature: Barley, Hordeum vulgare L.; canola, Brassica napus L. or Brassica rapa L.; oat, Avena sativa L.; rye, Secale cereale L.; triticale, × Triticosecale W.; wheat, Triticum aestivum L.
Potential crop yield loss due to early-season weed competition is an important risk associated with postemergence weed management programs. WeedSOFT is a weed management decision support system that has the potential to greatly reduce such risk. Previous research has shown that weed emergence time can greatly affect the accuracy of corn yield loss predictions by WeedSOFT, but our understanding of its predictive accuracy for soybean yield loss as affected by weed emergence time is limited. We conducted experiments at several sites across the Midwestern United States to assess accuracy of WeedSOFT predictions of soybean yield loss associated with mixed-species weed communities established at emergence (VE), cotyledon (VC), first-node (V1), or third-node (V3) soybean. Weed communities across research sites consisted mostly of annual grass species and moderately competitive annual broadleaf species. Soybean yield loss occurred in seven of nine site-years for weed communities established at VE soybean, four site-years for weed communities established at VC soybean, and one site-year for weed communities established at V1 soybean. No soybean yield loss was associated with weed communities established at the V3 stage. Nonlinear regression analyses of predicted and observed soybean yield data pooled over site-years showed that predicted yields were less than observed yields at all soybean growth stages, indicating overestimation of soybean yield loss. Pearson correlation analyses indicated that yield loss functions overestimated the competitive ability of high densities of giant and yellow foxtail with soybean, indicating that adjustments to competitive index values or yield loss function parameters for these species may improve soybean yield loss prediction accuracy and increase the usefulness of WeedSOFT as a weed management decision support system.
Crop seedlings detect the presence of neighboring competitors by means of the red to far-red ratio (R/FR) of light reflected from the leaf surfaces of adjacent seedlings. Although previous studies have suggested that shifts in the R/FR initiate crop–weed competition, no studies have documented the R/FR of light reflected from weeds or explored how weed management practices may affect the R/FR. Experiments were conducted to test the following hypotheses: (1) the duration of R/FR signals reflected from the leaf surface of weed seedlings will vary among herbicides following treatment and will decline faster as the dose of a given herbicide increases, (2) the R/FR of reflected light will differ among weed species, and (3) the R/FR of reflected light will decrease as weed seedling leaf area and stage of development increases. Velvetleaf was used as a model weed species to examine herbicide chemistry and dose, and six weed species including Powell amaranth, velvetleaf, Eastern black nightshade, barnyardgrass, proso millet, and green foxtail were evaluated in order to characterize the R/FR of light reflected from their leaf surfaces. Results of this study confirm that the R/FR reflected from the leaf surface of weeds is affected by: herbicide chemistry, herbicide dose, weed species, stage of weed development, and distance of the weed from the crop. The relative decline in the R/FR (as a percent of the untreated control) was most rapid following treatment with paraquat, followed by glufosinate and then glyphosate. As glyphosate dose decreased, so did the reduction in the relative R/FR. Based on reflected R/FR, weed species tended to be grouped into monocots and dicots, with the latter reflecting a lower R/FR per unit leaf area than the former. This disparity was attributed to the compact leaf arrangement and orientation of dicot weed canopies, which may contribute to the greater competitiveness of dicot weeds.
Nomenclature: Glyphosate; glufosinate; paraquat; barnyardgrass, Echinochloa crus-galli L. Beauv. ECHCG; Eastern black nightshade, Solanum ptycanthum Dunal. SOLPT; green foxtail, Setaria viridis L. (Beauv.) SETVI; proso millet, Panicum milliaceum L. PANMI; Powell amaranth, Amaranthus powellii S. Wats. AMPO; velvetleaf, Abutilon theophrasti Medik. ABUTH.
Mayweed chamomile seeds were collected from six different fields across the Pacific Northwest. All populations (each collection site was considered a population) were suspected to have some level of acetolactate synthase (ALS) resistance. Greenhouse and laboratory studies were conducted to determine if these populations were resistant to three different classes of ALS inhibitors: sulfonylureas (SU), imidazolinones (IMI), and triazolopyrimidines (TP). A whole-plant dose–response and in vitro ALS activity studies confirmed cross-resistance to thifensulfuron tribenuron/chlorsulfuron (SU), imazethapyr (IMI), and cloransulam (TP); however, resistance varied by herbicide class and population. Two ALS isoforms of the ALS gene (ALS1 and ALS2) were identified in mayweed chamomile; however, only mutations in ALS1 were responsible for resistance. No mutations were found in ALS2. Sequence analysis of the partial ALS gene identified four point mutations at position 197 (Pro197 to Leu, Gln, Thr, or Ser) in the resistant populations. This study demonstrates genotypic variation associated with cross-resistance to ALS inhibitors within and between populations.
Nomenclature: Thifensulfuron tribenuron; chlorsulfuron; imazethapyr; cloransulam; mayweed chamomile, Anthemis cotula L. ANTCO; wheat, Triticum aestivum L. TRZAX.
Growing enough cover crop biomass to adequately suppress weeds is one of the primary challenges in reduced-tillage systems that rely on mulch-based weed suppression. We investigated two approaches to increasing cereal rye biomass for improved weed suppression: (1) increasing soil fertility and (2) increasing cereal rye seeding rate. We conducted a factorial experiment with three poultry litter application rates (0, 80, and 160 kg N ha−1) and three rye seeding rates (90, 150, and 210 kg seed ha−1) in Pennsylvania and Maryland in 2008 and 2009. We quantified rye biomass immediately after mechanically terminating it with a roller and weed biomass at 10 wk after termination (WAT). Rye biomass increased with poultry litter applications (675, 768, and 787 g m−2 in the 0, 80, and 160 kg N ha−1 treatments, respectively), but this increased rye biomass did not decrease weed biomass. In contrast, increasing rye seeding rate did not increase rye biomass, but it did reduce weed biomass (328, 279, and 225 g m−2 in the 90, 150, and 210 kg seed ha−1 treatments, respectively). In 2009, we also sampled ground cover before rolling and weed biomass and density at 4 WAT. Despite no treatment effects, we found a correlation between bare soil before rolling (%) and weed biomass at 4 WAT. Our results suggest that increased rye seeding rate can effectively reduce weed biomass and that ground cover in early spring can influence weed biomass later in the growing season.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere