BioOne.org will be down briefly for maintenance on 13 August 2025 between 18:00-21:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Glufosinate resistance in Palmer amaranth (Amaranthus palmeri S. Watson) was recently detected in three accessions from Arkansas, USA. Amaranthus palmeri is the first and only broadleaf weed species resistant to this herbicide, and the resistance mechanism is still unclear. A previous study characterized the glufosinate resistance level in the accessions from Arkansas. A highly glufosinate-resistant accession was further used to investigate the mechanism conferring glufosinate resistance in A. palmeri. Experiments were designed to sequence the herbicide target enzyme cytosolic and chloroplastic glutamine synthetase isoforms (GS1 and GS2, respectively) and quantify copy number and expression. Absorption, translocation, and metabolism of glufosinate using the 14C-labeled herbicide were also evaluated in the resistant and susceptible accessions. The glufosinate-resistant accession had an increase in copy number and expression of GS2 compared with susceptible plants. All accessions showed only one GS1 copy and no differences in expression. No mutations were identified in GS1 or GS2. Absorption (54% to 60%) and metabolism (13% to 21%) were not different between the glufosinate-resistant and glufosinate-susceptible accessions. Most residues of glufosinate (94% to 98%) were present in the treated leaf. Glufosinate translocation to tissues above the treated leaf and in the roots was not different among accessions. However, glufosinate translocation to tissues below the treated leaf (not including roots) was greater in the resistant A. palmeri (2%) compared with the susceptible (less than 1%) accessions. The findings of this paper strongly indicate that gene amplification and increased expression of the chloroplastic glutamine synthetase enzyme are the mechanisms conferring glufosinate resistance in the A. palmeri accession investigated. Thus far, no additional resistance mechanism was observed, but further investigations are ongoing.
Koffi Badou Jeremie Kouame, Matthew B. Bertucci, Mary C. Savin, Taghi Bararpour, Lawrence E. Steckel, Thomas R. Butts, Cammy D. Willett, Fellipe G. Machado, Nilda Roma-Burgos
Palmer amaranth (Amaranthus palmeri S. Watson) is one of the most problematic weeds in many cropping systems in the midsouthern United States because of its multiple weedy traits and its propensity to evolve resistance to many herbicides with different mechanisms of action. In Arkansas, A. palmeri has evolved metabolic resistance to S-metolachlor, compromising the effectiveness of an important weed management tool. Greenhouse studies were conducted to evaluate the differential response of A. palmeri accessions from three states (Arkansas, Mississippi, and Tennessee) to (1) assess the occurrence of resistance to S-metolachlor among A. palmeri populations, (2) evaluate the resistance level in selected accessions and their resistant progeny, (3) and determine the susceptibility of most resistant accessions to other soil-applied herbicides. Seeds were collected from 168 crop fields between 2017 and 2019. One hundred seeds per accession were planted in silt loam soil without herbicide for >20 yr and sprayed with the labeled rate of S-metolachlor (1,120 g ai ha–1). Six accessions (four from Arkansas and two from Mississippi) were classified resistant to S-metolachlor. The effective doses (LD50) to control the parent accessions ranged between 73 and 443 g ha–1, and those of F1 progeny of survivors were 73 to 577 g ha–1. The resistance level was generally greater among progeny of surviving plants than among resistant field populations. The resistant field populations required 2.2 to 7.0 times more S-metolachlor to reduce seedling emergence 50%, while the F1 of survivors needed up to 9.2 times more herbicide to reduce emergence 50% compared with the susceptible standard.
A Palmer amaranth (Amaranthus palmeri S. Watson) population (KCTR: KS Conservation Tillage Resistant) collected from a conservation tillage field was confirmed with resistance to herbicides targeting at least six sites of action, including 2,4-D. The objectives of this research were using KCTR A. palmeri to investigate (1) the level of 2,4-D resistance, (2) 2,4-D absorption and translocation profiles, (3) the rate of 2,4-D metabolism compared with 2,4-D–tolerant wheat (Triticum aestivum L.), and (4) the possible role of cytochrome P450s (P450s) in mediating resistance. Dose–response experiments were conducted to assess the level of 2,4-D resistance in KCTR compared with susceptible plants, KSS (KS 2,4-D susceptible) and MSS (MS 2,4-D susceptible). KSS, MSS, and KCTR plants were treated with [14C]2,4-D to determine absorption, translocation, and metabolic patterns. Additionally, whole-plant dose–response assays were conducted by treating KCTR and KSS plants with P450 inhibitors (malathion, piperonyl butoxide [PBO]) before 2,4-D application. Dose–response experiments indicated a 6- to 11-fold 2,4-D resistance in KCTR compared with susceptible plants. No difference was found in percent [14C]2,4-D absorption among the populations. However, 10% less and 3 times slower translocation of [14C]2,4-D was found in KCTR compared with susceptible plants. Importantly, [14C]2,4-D was metabolized faster in KCTR than susceptible plants. At 24, 48, and 72 h after treatment (HAT), KCTR metabolized ∼20% to 30% more [14C]2,4-D than susceptible plants. KCTR plants and wheat generated metabolites with similar polarity. Nonetheless, at 24 HAT, ∼70% of [14C]2,4-D was metabolized in wheat, compared with only 30% in KCTR A. palmeri. Application of malathion before 2,4-D increased the sensitivity to 2,4-D in KCTR, suggesting involvement of P450s in mediating 2,4-D metabolism. However, no such impact of PBO was documented. Overall, this study confirms that enhanced metabolism is the primary mechanism of 2,4-D resistance in KCTR.
Cultivation of lowbush blueberry (Vaccinium angustifolium Aiton), an important crop in the eastern part of North America, is unique, as it is carried out over the course of two consecutive growing seasons. Pest management, particularly weed management, is impacted by this biennial cultural practice. The choice of methods to control weeds is narrow, and such a system relies heavily on herbicides for weed management. Availability of unique herbicide active ingredients for weed management is limited, and available herbicides are used repeatedly, so the risk of developing resistance is acute. Hair fescue (Festuca filiformis Pourr.), a perennial grass weed, has evolved resistance to hexazinone, a photosystem II inhibitor frequently used in lowbush blueberry production. We show that substitution of phenylalanine to isoleucine at position 255 is responsible for a decreased sensitivity to hexazinone by a factor of 6.12. Early diagnosis of resistance based on the detection of the mutation will alert growers to use alternative control methods and thus help to increase the sustainability of the cropping system.
Many studies have documented the interaction between 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting and photosystem II (PSII)-inhibiting herbicides. Most have focused on the interaction between mesotrione and atrazine, with only a few studies characterizing the nature of the interaction between tolpyralate and atrazine. Therefore, five field experiments were conducted in Ontario, Canada, over a 3-yr period (2019 to 2021) to characterize the interaction between three rates of tolpyralate (15, 30, and 45 g ai ha–1) and three rates of atrazine (140, 280, and 560 g ai ha–1) for the control of seven annual weed species in corn (Zea mays L.). Tolpyralate at 30 or 45 g ha–1 applied with atrazine at 280 or 560 g ha–1 controlled velvetleaf (Abutilon theophrasti Medik.), redroot pigweed (Amaranthus retroflexus L.), common ragweed (Ambrosia artemisiifolia L.), common lambsquarters (Chenopodium album L.), and wild mustard (Sinapis arvensis L.) >90% at 8 wk after application (WAA). Tolpyralate and atrazine were synergistic at each rate combination for the control of A. theophrasti at 8 WAA. In contrast, A. retroflexus and S. arvensis control at 8 WAA was additive with each rate combination. At 8 WAA, C. album control was generally additive, but one rate combination was synergistic. Ambrosia artemisiifolia control at 8 WAA was synergistic with five rate combinations and additive with the other four. Barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.] control at 8 WAA was additive with seven of the rate combinations and synergistic with two. Setaria spp. control at 8 WAA was synergistic with one more rate combination compared with E. crus-galli, but the two weed species shared the same synergistic rate combinations. This study concludes that extrapolation or broad classifications of the interaction between tolpyralate and atrazine would be inappropriate, as the interaction can vary due to herbicide rate, weed species, and the response parameter analyzed.
The complementary modes of action of 4-hydroxyphenylpyruvate dioxygenase (HPPD) and photosystem II (PSII) inhibitors have been credited for the synergistic weed control improvement of several species. Recent research discovered that reactive oxygen species (ROS) generation and subsequent lipid peroxidation is the cause of cell death by the glutamine synthetase inhibitor glufosinate. Therefore, a basis for synergy exists between glufosinate and HPPD inhibitors, but the interaction has not been well reported. Four field experiments were conducted in Ontario, Canada, in 2020 and 2021 to determine the interaction between HPPD-inhibiting (mesotrione and tolpyralate) and ROS-generating (atrazine, bromoxynil, bentazon, and glufosinate) herbicides on control of annual weed species in corn (Zea mays L.). The ROS generators were synergistic with the HPPD inhibitors and provided ≥95% control of velvetleaf (Abutilon theophrasti Medik.), except for tolpyralate + glufosinate, which was additive at 8 wk after application (WAA) and provided 87% control. Tank mixes of HPPD inhibitors plus ROS generators were synergistic for the control of common ragweed (Ambrosia artemisiifolia L.), except for tolpyralate + glufosinate, which was antagonistic at 8 WAA. Tolpyralate + glufosinate was antagonistic for the control of barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.] and Setaria spp. at 8 WAA. Common lambsquarters (Chenopodium album L.) control at 8 WAA was synergistic and ≥95% with mesotrione plus atrazine, bromoxynil, or glufosinate and with tolpyralate plus bromoxynil or bentazon. Herbicide tank mixes were generally additive for the control of wild mustard (Sinapis arvensis L.) at 8 WAA, except for the synergistic tank mixes of tolpyralate plus atrazine or bromoxynil; however, each tank mix provided 97% to 100% control of S. arvensis. Results from this study demonstrate that co-application of ROS generators with mesotrione or tolpyralate controlled all broadleaf weed species >90% at 8 WAA, with the exceptions of A. artemisiifolia and C. album control with tolpyralate + glufosinate. Mesotrione plus PSII inhibitors controlled E. crus-galli and Setaria spp. 48 to 68 percentage points less than tolpyralate plus the respective PSII inhibitor at 8 WAA; however, mesotrione + glufosinate and tolpyralate + glufosinate controlled the grass weed species similarly.
Cover crops are increasingly being included in crop rotations as a mechanism to promote diversity and provide agroecosystem services, including weed suppression. Recently, cover crop mixtures have increased in popularity in an attempt to provide a greater diversity in ecological services as compared with monocultures. Several recent studies, however, have failed to detect a positive effect of cover crop diversity on biomass production or weed suppression. Here we assessed biomass productivity and weed suppression in 19 cover crops seeded as monocultures and 19 mixtures of varying species composition and functional richness (two- and three-species mixtures) of full-season cover crops in Atlantic Canada. Cover crop biomass production and weed suppression varied by species identity, functional diversity, and species richness. As cover crop biomass increased regardless of diversity, weed biomass declined. Highly productive forbs and grasses provided the greatest weed suppression in monoculture. In line with previous observations, mixtures were not more productive or weed suppressive on average than the most productive monocultures. We observed that the inclusion of the highly productive species buckwheat (Fagopyrum esculentum Moench) and sorghum–sudangrass [Sorghum × drummondi (Nees ex Steud.) Millsp. & Chase] in a mixture increased stand evenness, productivity, weed suppression, and spatiotemporal stability. Taken together, our results suggest that effects of diversity on mixture productivity and weed suppression are species specific. This further demonstrates the importance of species selection in cover crop mixture design.
Plant control methods have been developed to reduce weed species that are often problematic in agricultural systems. However, these methods can create new challenges, such as herbicide resistance. Determining which plant traits are associated with herbicide resistance can assist managers in identifying species with the potential to develop herbicide resistance and to better understand factors contributing to the evolution of herbicide resistance. We used random forest models to model herbicide resistance of noxious weeds as a function of 10 biological and ecological plant characteristics. Three noxious weed characteristics—plant life span, seedbank persistence, and occurrence in riparian or wetland microsites—predicted herbicide resistance with 87% accuracy. Species with persistent seedbanks and with short life spans (i.e., annuals) that occurred outside riparian or wetland areas were most likely to develop herbicide resistance. Short life spans indicate short generation times enabling faster evolution for herbicide resistance. Persistent seedbanks may increase the survival of resistant genotypes within a population or may be co-selected as an alternate form of escape from control methods. Species occurring in riparian or wetland microsites may be a case of “avoidance” rather than resistance, as managers typically avoid applying herbicide in these areas. Currently, 47 of the noxious weed species analyzed in this study are herbicide resistant, and our models identified an additional 63 species with traits that are highly associated with herbicide resistance, potentially indicating species that are at risk of developing resistance under conducive conditions. Further data-driven analyses with more plant traits and species from around the world could help refine current risk assessment of herbicide-resistance development.
Water stress and weed competition are critical stressors during corn (Zea mays L.) development. Genetic improvements in corn have resulted in hybrids with greater tolerance to abiotic and biotic stressors; however, drought stress remains problematic. Therefore, in light of the anticipated change in precipitation throughout the Great Lakes Region, greenhouse experiments were conducted to evaluate water stress and weed competition on drought-tolerant corn performance. The study followed a completely randomized block design with four replications. Factorial treatment combinations consisted of drought-tolerant corn competition (presence or absence), water stress (100% or 50% volumetric water content [VWC]), and nine corn:common lambsquarters (Chenopodium album L., CHEAL) densities. Corn and C. album growth parameters were measured at 14 and 21 d after water-stress initiation. To explore the impact of reduced soil moisture and weed competition on corn and C. album growth parameters, photosynthetic response, and biomass, linear mixed-effects and nonlinear regression models were constructed in R. Chenopodium album biomass was reduced by 46% and 50% under corn competition at 2 and 4 weeds pot–1 (P = 0.0003, 0.0004). However, introducing crop competition under 6 and 9 weeds pot–1 did not reduce C. album biomass (P = 0.90, 1.00). Averaged across weed pressures, corn biomass was 22% less when grown under 50% compared with 100% VWC (P = 0.0003). However, averaged across VWC values, increasing weed competition from 0 to 2 (P = 0.04), 4 (P = <0.0001), 6 (P = 0.0002), or 9 (P = 0.0002) weeds pot–1 reduced biomass by 22%, 38%, 35%, and 36%. Overall, water stress and C. album competition negatively affected the parameters measured in this study; however, the magnitude of reduction is stronger under drought stress than increasing weed competition when water is not limiting. Therefore, field crop growers must modify current integrated weed management programs to maintain yield under future climate stress.
Silverleaf nightshade (Solanum elaeagnifolium Cav.) has become a highly troublesome weed in irrigated summer crops in Israel. Because herbicide-based options to control this weed are limited, the best way to improve weed control is through a study of its biology, particularly its germination dynamics. The main objective of this study was to determine the impact of temperature on the seed germination dynamics of S. elaeagnifolium and to develop a temperature-based (thermal) prediction model for three S. elaeagnifolium populations growing in different ecosystems in Israel. To this end, a laboratory study was undertaken in which the germination proportion of S. elaeagnifolium seeds was monitored under seven temperature regimes: 2/8, 7/ 13, 12/18, 17/23, 22/28, 27/33, and 32/38 C (night/day). In addition, the impact of alternating temperature regimes between night and day temperatures (of 0, 2, 4, 6, 8, and 10 C), averaged over 20 and 25 C, was determined. It was found that the three populations shared similar germination characteristics and dynamics. An alternation of ≥6 C between night and day temperatures was needed for optimal germination, with no germination taking place under constant temperatures. In all three populations, the minimal requirement for germination was a 12/18 C (night/day) regime, with the final germination proportion lying between 0.25 and 0.36. The highest final germination proportion of ≥0.8 was observed for the 17/23 C regime in all three populations. Modeling the germination rate as a function of temperature allowed us to determine cardinal temperatures for all three populations taken together, with the values being Tb = 10.8 C (base temperature), To = 23.8 C (optimal temperature), and Tc = 35.9 C (ceiling temperature). These biological parameters allowed accurate (root mean-square error < 0.06%) prediction of S. elaeagnifolium seed germination over the entire temperature range.
An in-depth understanding of the germination response of troublesome weed species, such as feather fingergrass (Chloris virgata Sw.), to environmental factors (temperature, soil moisture, etc.) could play an essential role in the development of sustainable site-specific weed control programs. A laboratory experiment was conducted to understand the germination response of 10 different biotypes of C. virgata to five temperature regimes (ranging from 15/5 to 35/25 C) under a 12/12-h (light/dark) photoperiod. No consistent germination behavior was observed between biotypes, as some biotypes demonstrated high final cumulative germination (FCG) at low alternating temperature regimes (15/5 and 20/10 C) and some biotypes exhibited high FCG at a high alternating temperature regime (30/20 C). All biotypes revealed late germination initiation (T10, time taken to reach 10% germination) at the lowest temperature range (15/5 C), ranging from 171 to 173 h. However, less time was required to reach 90% germination (T90), ranging from 202 to 756 h. At higher alternating temperature regimes (30/20 and 35/25 C), all biotypes initiated germination (T10) within 40 h, and a wide range of hours was required to reach 90% germination (T90), ranging from 284 to 1,445 h. Differences in FCG of all the biotypes at all the temperature ranges showcased the differential germination nature among biotypes of C. virgata. The cool temperatures delayed germination initiation compared with warmer temperatures, even though FCGs were similar across a wide range of thermal conditions, indicating that this species will be problematic throughout the calendar year in different agronomic environments. The data from this study have direct implications on scheduling herbicide protocols, tillage timing, and planting time. Therefore, data generated from this study can aid in the development of area- and species-specific weed control protocols to achieve satisfactory control of this weed species.
Junglerice [Echinochloa colona (L.) Link] is increasing its prevalence in eastern Australia by adapting to Australia's changing climatic conditions and conservation agricultural systems and by evolving resistance to glyphosate. Information is limited on the growth and seed production dynamics of E. colona when it interferes with mung bean [Vigna radiata (L). R. Wilczek], a major potential export crop for eastern Australia. This field study examined the interference of E. colona in mung bean for two summer seasons (2020 and 2021) at Gatton, QLD. Different infestation levels (0, 2, 4, 8, 16, and 32 plants m–2) of E. colona were assessed for their potential to cause yield reductions in mung bean. Seed yield of mung bean was highest in the weed-free plots (2,767 kg ha–1) and declined by 20%, 27%, 34%, and 43% at weed infestation levels of 4, 8, 16, and 32 plants m–2, respectively. Echinochloa colona biomass in mung bean varied from 11 to 137 g m–2 as weed density increased from 2 to 32 plants m–2. Based on a three-parameter hyperbolic rectangular decay model, crop yield loss was 52% and 57%, respectively, when weed density and weed biomass approached maximum. Echinochloa colona at the highest density (32 plants m–2) produced a maximum of 15,140 seeds m–2, and this seed production was reduced by 50% at a weed density of 10 plants m–2. Echinochloa colona plants retained 63% to 68% seeds at mung bean maturity, indicating a great opportunity for harvest weed seed control. This study suggests that a high infestation of E. colona in mung bean fields could cause a substantial yield loss and increase the weed seedbank.
Morningglories (Ipomoea spp.) are among the most troublesome weeds in cucurbits in the United States; however, little is known about Ipomoea spp. interference with horticultural crops. Two additive design field studies were conducted in 2020 at two locations in Indiana to investigate the interference of ivyleaf morningglory (Ipomoea hederacea Jacq.), entireleaf morningglory (Ipomoea hederacea Jacq. var. integriuscula A. Gray.), and pitted morningglory (Ipomoea lacunosa L.) with triploid watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai]. Immediately after watermelon was transplanted, Ipomoea spp. seedlings were transplanted into the watermelon planting holes at densities of 0 (weed-free control), 3, 6, 12, 18, and 24 plants 27 m–2. Fruit was harvested once a week for 4 wk, and each fruit was classified as marketable (≥4 kg) or non-marketable (<4 kg). At 1 wk after the final harvest, aboveground biomass samples were collected from 1 m2 per plot and oven-dried to obtain watermelon and Ipomoea spp. dry weight. Seed capsules and the number of seeds in 15 capsules were counted from the biomass sample to estimate seed production. Ipomoea spp. densities increasing from 3 to 24 plants 27 m–2 increased marketable watermelon yield loss from 58% to 99%, reduced marketable watermelon fruit number 49% to 98%, reduced individual watermelon fruit weight 17% to 45%, and reduced watermelon aboveground biomass 83% to 94%. Ipomoea spp. seed production ranged from 549 to 7,746 seeds m–2, greatly increasing the weed seedbank. Ipomoea spp. hindered harvest due to their vines wrapping around watermelon fruits. The most likely reason for watermelon yield loss was interference with light and consequently less dry matter being partitioned into fruit development due to less photosynthesis. Yield loss was attributed to fewer fruits and the weight of each fruit.
Adoption of the new biofuel crop carinata (Brassica carinata A. Braun) in the southeastern United States will largely hinge on sound agronomic recommendations that can be economically incorporated into and are compatible with existing rotations. Timing of weed control is crucial for yield protection and long-term weed seedbank management, but predictive weed emergence models have not been as widely studied in winter crops for this purpose. In this work, we use observed and predicted emergence of a winter annual weed community to create recommendations for timing weed control according to weed and crop phenology progression. Observed emergence timings for four winter annual weed species in North Carolina were used to validate previously published models developed for winter annual weeds in Florida by accounting for temperature and daylength differences, and this approach explained more than 70% of the variability in observed emergence. Emergence of stinking chamomile (Anthemis cotula L.) and cutleaf evening primrose (Oenothera laciniata Hill.) followed biphasic patterns comparable to wild radish (Raphanus raphanistrum L.), which were predicted with previously published models accounting for 82% and 84% of the variation, respectively. Using the predictive models for weed emergence and carinata growth, critical control windows (CCW) were estimated for Clayton, NC, and Jay, FL, according to different planting dates. The results demonstrated how early planting coincided with the emergence of three competitive winter weeds, but early control could also remove a large proportion of the predicted emergence of these species. The framework for how planting timing will affect winter weed emergence and crop growth will be an instructive decision-making tool to help prepare farmers to manage weeds in carinata, but it could also be useful for weed management planning for other winter crops.
Carinata (Brassica carinata A. Braun) is a potential crop for biofuel production, but the risk of injury resulting from carryover of soil herbicides used in rotational crops is of concern. The present study evaluated the carryover risk of imazapic and flumioxazin for carinata. Label rates of imazapic (70 g ai ha–1) and flumioxazin (107 g ai ha–1) were applied 24, 18, 12, 6, and 3 mo before carinata planting (MBP). The same herbicides were applied preemergence right after carinata planting at 1X, 0.5X, 0.25X, 0.125X, 0.063X, and 0X the label rate. When either herbicide was applied earlier than 3 MBP, there was no difference in plant density compared with the nontreated control. Carinata damage was <25% when flumioxazin or imazapic was applied at least 6 MBP in Clayton, NC (sandy loam soil), while in Jackson Springs, NC (coarser-textured soil and higher precipitation), at least 12 MPB were needed to lower plant damage to <25%. Preemergence application of 0.063X each herbicide decreased plant density by 40%, with damage reaching >25%. Quantification of herbicide residues in both soils showed that imazapic moved deeper in the soil profile than flumioxazin. This was more evident in Jackson Springs, where 0.68, 3.52, and 7.77 ng of imazapic g–1 soil were detected (15- to 20-cm depth) when the herbicide was applied at 12, 6 and 3 MBP, respectively, while no flumioxazin residues were detected at the same soil depths and times. When residues were 7.78 and 6.90 ng herbicide g–1 soil in the top 10 cm of soil for imazapic and flumioxazin, respectively, carinata exhibited at least 25% damage. Rotational intervals to avoid imazapic and flumioxazin damage to carinata should be between 6 and 12 MBP depending on soil type and environmental conditions, with longer intervals for the former than the latter.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere