Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Herbicides are the primary tool for controlling weeds in peanut (Arachis hypogaea L.) and are crucial to sustainable peanut production in the United States. The literature on chemical weed management in peanut in the past 53 yr (1970 to 2022) in the United States was systematically reviewed to highlight the strengths and weaknesses of different herbicides and identify current research gaps in chemical weed management. Residual weed control in peanut is achieved mainly with dimethenamid-P, ethalfluralin, pendimethalin, and S-metolachlor. More recently, the use of the protoporphyrinogen oxidase inhibitor flumioxazin and acetolactate synthase inhibitors, such as diclosulam, for residual weed control in peanut has increased considerably. Postemergence broadleaf weed control in peanut is achieved mainly with acifluorfen, bentazon, diclosulam, imazapic, lactofen, paraquat, and 2,4-DB, while the graminicides clethodim and sethoxydim are the major postemergence grass weed control herbicides in peanut. Although several herbicides are available for weed control in peanut, no single herbicide can provide season-long weed control due to limited application timing, lack of extended residual activity, variability in weed control spectrum, and rotational restrictions. Therefore, effective weed management in peanut often requires herbicide mixtures and/or sequential application of preplant-incorporated, preemergence, and/or postemergence herbicides. However, the available literature showed a substantive range in herbicide efficacy due to variations in environmental conditions and flushes of weed germination across years and locations. Despite the relatively high efficacy of herbicides, the selection of herbicide-resistant weeds is another area of increasing concern. Future research should focus on developing new strategies for preventing or delaying the development of resistance and improving herbicide efficacy within the context of climate change and emerging constraints such as water shortages, rising temperatures, and increasing CO2 concentration.
Rapid increase in the hectarage and agricultural systems that use cover cropping for soil conservation and improvement, soil moisture retention, and weed management has highlighted the need to develop formal breeding programs for cover crop species. Cereal rye (Secale cereale L.) is preferred by many growers due to high biomass production and weed-suppression potential, which is believed to be partially due to allelopathy. Rye germplasm exhibits large variability in allelopathic activity, which could be used to breed rye with enhanced weed suppression. Here, we provide an overview of rye history and breeding and describe a strategy to develop rye lines with increased allelopathic activity. The discussion focuses on ways to deal with important challenges to achieving this goal, including obligate cross-pollination and its consequent high segregation levels and the need to quantify allelopathic activity under field conditions. This review seeks to encourage weed scientists to collaborate with plant breeders and promote the development of cover crop cultivars better suited to reduce weed populations.
The evolution of herbicide resistance in weeds can reduce the herbicide's efficacy, depleting crop yield and quality. Our group previously confirmed 2,4-D resistance in three Palmer amaranth (Amaranthus palmeri S. Watson) populations (R1 to R3). In the current study, the first filial (F1) seeds of 2,4-D–resistant populations were subjected to screening tests for resistance to other auxin-mimicking herbicides, florpyrauxifen-benzyl (FPB; 30 g ai ha–1) and dicamba (560 g ae ha–1). Dicamba killed all resistant populations. FPB provided 100% control of only the R3 population. Sensitivities to FPB were reduced by 2 and 35 percentage points in R1 and R2 populations, respectively. Pretreatment with malathion increased FPB sensitivity by 15 percentage points in the R2 population. FPB resistance characterization and mechanism were evaluated using a purified line of the R2 population (F2). The FPB sensitivity was 29-fold lower in the F2 line than in the susceptible (S) standard. Absorption, translocation, and total metabolism of FPB were similar for S and R2 populations. However, less florpyrauxifen-acid (FPA) was detected in the R2 population (17.0% to 25.4%) than in the S population (22.8% to 33.2%), due to its rapid metabolism and/or reduced production with resistance evolution. Because the results of the non–target site resistance mechanism evaluation observed in this study were insufficient to account for the 29-fold reduced sensitivity of the R2 population to FPB, further genetic studies are needed to investigate the presence of target-site resistance in that population.
The presence of glyphosate-resistant smooth pigweed (Amaranthus hybridus L.) biotypes has increased in southern Brazil in recent years, presenting the triple amino acid substitution TAP-IVS in 5-enol-pyruvylshikimate-3-phosphate synthase (EPSPS) previously found in Argentina. Some of these biotypes have morphological characteristics of A. hybridus and redroot amaranth (Amaranthus retroflexus L.). The present study aimed to identify, through molecular markers, the herbicide-resistant species of Amaranthus from Brazil that have the TAP-IVS substitution and to analyze the occurrence of pollen-mediated gene flow (PMGF) as the source of the TAP-IVS substitution in these biotypes. Six biotypes were evaluated using internal transcribed spacer (ITS) sequences, of which two (AMACHY-S and CAMAQ-R) were molecularly classified as A. hybridus and four (AMACRET-S, AMACVI-S, ARRGR-R, and SAOJER-R) were unclassified. Interestingly, all the glyphosate-resistant biotypes (ARRGR-R, SAOJER-R, and CAMAQ-R) had the TAP-IVS substitution and an increase in EPSPS relative copy number; however, only CAMAQ-R was confirmed as A. hybridus. Although the biotypes ARRGR-R and SAOJER-R are closely related to A. hybridus and green pigweed (Amaranthus powellii S. Watson), their species identity could not be resolved. The biotype SAOJER-R also was resistant to acetolactate synthase (ALS)-inhibiting herbicides due to a tryptophan to leucine substitution at position 574 in ALS. The evaluation of 119,746 seedlings in an intraspecific hybridization study of A. hybridus indicated an outcrossing frequency of 0.09%. In contrast, an absence of interspecific hybridization (A. hybridus × unclassified biotype, AMACVI-S) was found after screening 111,429 offspring. Unclassified biotypes might be derived from one or more ancient hybridization events and subsequently evolved the triple mutation independently. Alternatively, such biotypes could have evolved from recent hybridization events, which occur at a frequency below the level of detection in our study.
Turfgrass managers are concerned about zoysiagrass (Zoysia japonica Steud.) injury from nonselective herbicide treatment during winter dormancy. Research was conducted to assess factors affecting spray penetration into semidormant ‘Meyer’ zoysiagrass canopies and to evaluate absorption and translocation of [14C]glyphosate and [14C]glufosinate into green leaves and subtending stolons. Absorption of [14C]glyphosate and [14C]glufosinate was up to four times greater in stolons than in leaves. Zoysiagrass leaves treated with [14C]glufosinate had more rapid 14C absorption than those treated with [14C]glyphosate. More 14C translocated out of the treated area following [14C]glyphosate treatment compared with [14C]glufosinate and moved more readily from stolon to leaves than from leaves to stolon. When extended-range, flat-fan spray tips (XR) were positioned 61 cm above zoysiagrass, 73% and 11% of recovered colorant was extracted from dormant vegetation in the upper and lower canopy levels. Turbo TeeJet® spray tips (TTI) deposited fewer droplets into the upper canopy and more droplets into the middle and lower canopy regardless of position above the turf surface. Increasing pressure from 103 to 414 kPa increased droplet velocities from XR and TTI nozzles and decreased droplet diameters of XR nozzles. Droplet diameters were also substantially increased when using TTI nozzles compared with XR nozzles. Droplet diameter and associated mass were more determinant of turfgrass canopy penetration than droplet velocity. At 60 L ha–1 of carrier volume, 23% of colorant reached the lower canopy level, and this quantity increased by 2.3% per additional 100 L ha–1. When carrier volume was reduced from 584 to 60 L ha–1, 48% less colorant was delivered to the lower canopy level. Given that subcanopy stolons are always present and absorb more glyphosate and glufosinate than leaves, practices such as avoiding induction-type nozzles, raising spray height, and reducing spray volume can reduce herbicide delivery and potential injury to semidormant zoysiagrass.
Basal bark treatment with triclopyr butoxyethyl ester is used to control woody invasive plants, including Brazilian peppertree (Schinus terebinthifolia Raddi). However, the ester formulation cannot be applied where standing water is present, which includes wetlands where S. terebinthifolia is found. In 2009, a low-volatile acid formulation of triclopyr was labeled for use in aquatic sites, which allows for basal bark applications when standing water is present. This formulation may have utility for controlling woody plants in standing water. However, anecdotal observations of injury to non-target plants following applications during periods of inundation have been reported. To address this, mesocosm studies were conducted to assess non-target injury through triclopyr root exudation or release from the surface of treated stems via flooding. Mesocosms contained S. terebinthifolia as the treated target, while sugarberry (Celtis laevigata Willd.), buttonbush (Cephalanthus occidentalis L.), and red maple (Acer rubrum L.) were included as non-targets. In the first study, the pathway of root exudation for non-target injury following triclopyr (34 g L–1) basal bark application was isolated with activated charcoal placed at the soil surface. In the second study, mesocosms were flooded to assess triclopyr release from the surface of treated stems and subsequent non-target injury. Defoliation of non-target species posttreatment was ≤8%, and triclopyr was detected at ≤5 µg L–1 in mesocosm wells when activated charcoal was present. Posttreatment non-target defoliation up to 92%, coupled with triclopyr concentrations in surface waters and wells as high as 4,637 µg L–1, indicated triclopyr movement as a result of flooding. Additionally, triclopyr non-target injury from soil activity independent of flooding was observed. These findings provide limited evidence of triclopyr root exudation but considerable evidence of triclopyr release during flooding following basal bark treatment and support a cautionary approach to basal bark application when standing water is present.
Mexican devil [Ageratina adenophora (Spreng.) R.M. King & H. Rob.], a globally invasive weed with destructive effects on forests, has spread to numerous countries. To elucidate the inhibition of tree growth by A. adenophora, a study was conducted using the fungi (Lactarius deliciosus, Ceriporia lacerata, and Fomitopsis palustris) involved in the recycling of carbon and nutrients in forests. The focus was on investigating soil nitrogen and phosphorus availability in response to aqueous extracts from uncomposted and aerobically composted A. adenophora (EUA and ECA, respectively). The samples of composted A. adenophora from different sites exhibited a significant reduction in the concentration of allelochemicals 4,7-dimethyl-1-(propan-2-ylidene)-1,4,4a,8a-tetrahydronaphthalene-2,6(1H, 7H)-dione and 6-hydroxy-5-isopropyl-3,8-dimethyl-4a,5,6,7,8,8a-hexahydronaphthalen-2(1H)-one. This reduction more than 94% when compared with the concentration of these allelochemicals in CA. The EUA solutions at 5 and 10 mg L–1 (oven-dried plant biomass base) minimized L. deliciosus and C. lacerata growth, and significantly decreased F. palustris growth on the soil surface and within the soil. However, soil with ECA had no effect or promoting effect on the fungal growth. Compared with CK (only fungal inoculation in tested soil), the EUA solution reduced soil nitrogen and phosphorus, while ECA had the opposite effect; soil pH was increased by 0.01 to 0.08 under EUA treatment, while it decreased by 0.5 to 0.41under ECA treatment. Nitrogen and phosphorus availability were positively correlated with protease and phosphatase activity (r = 0.723 to 0.944), while available phosphorus was inversely correlated with pH in tested soils (r = -(0.809 to 0.978)). As such, the EUA solution decreased soil nitrogen and phosphorus supplies by inhibiting the liberation of proteases, phosphatases, and protons, which may lead to poor growth or even mortality of three fungal species. The in situ aerobically composted A. adenophora residues left behind may directly supply fungal species with nutrients and indirectly increase soil nutrient availability via the promotion of nitrogen and phosphorus mobilization.
Palmer amaranth (Amaranthus palmeri S. Watson) is a major biotic constraint in agronomic cropping systems in the United States. While crop–weed competition models offer a beneficial tool for understanding and predicting crop yield losses, within these models, certain weed biological characteristics and their responses to the environment are unknown. This limits understanding of weed growth in competition with crops under different irrigation methods and how competition for soil moisture affects crop growth parameters. This research measured the effect of center-pivot irrigation (CPI) and subsurface drip irrigation (SDI) on the actual evapotranspiration (ETa) of A. palmeri grown in maize (Zea mays L.), soybean [Glycine max (L.) Merr.], and fallow subplots. Twelve A. palmeri plants were alternately transplanted 1 m apart in the middle two rows of maize, soybean, and fallow subplots under CPI and SDI in 2019 and 2020 in south-central Nebraska. Maize, soybean, and fallow subplots without A. palmeri were included for comparison. Soil-moisture sensors were installed at 0-0.30, 0.30-0.60, and 0.60-0.90-m soil depths next to or between three A. palmeri and crop plants in each subplot. Soil-moisture data were recorded hourly from the time of A. palmeri transplanting to crop harvest. The results indicate differences in A. palmeri ETa between time of season (early, mid-, and late season) and crop type across 2019 and 2020. Although irrigation type did not affect subplot data, the presence of A. palmeri had an impact on subplot ETa across both years, which can be attributed to the variable relationship between volumetric soil water content (VWC) and ETa throughout the growing season due to advancing phenological stages and management practices. This study provides important and first-established baseline data and information about A. palmeri evapotranspiration and its relation to morphological features for future use in mechanistic crop–weed competition models.
Palmer amaranth (Amaranthus palmeri S. Watson) is the most problematic weed of cotton (Gossypium hirsutum L.)-cropping systems in the U.S. Southeast. Heavy reliance on herbicides has selected for resistance to multiple herbicide mechanisms of action. Effective management of this weed may require the integration of cultural practices that limit germination, establishment, and growth. Cover crops have been promoted as a cultural practice that targets these processes. We conducted a 2-yr study in Georgia, USA, to measure the effects of two annual cover crops (cereal rye [Secale cereale L.] and crimson clover [Trifolium incarnatum L.]), a perennial living mulch (‘Durana®’ white clover [Trifolium repens L.]), and a bare ground control on A. palmeri population dynamics. The study was conducted in the absence of herbicides. Growth stages were integrated into a basic demographic model to evaluate differences in population trajectories. Cereal rye and living mulch treatments suppressed weed seedling recruitment (seedlings seed–1) 19.2 and 13 times and 12 and 25 times more than the bare ground control, respectively. Low recruitment was correlated positively with low light transmission (photosynthetic active radiation: above canopy photosynthetically active radiation [PAR]/below cover crop PAR) at the soil surface. Low recruitment rates were also negatively correlated with high survival rates. Greater survival rates and reduced adult plant densities resulted in greater biomass (g plant–1) and fecundity (seeds plant–1) in cereal rye and living mulch treatments in both years. The annual rate of population change (seeds seed–1) was equivalent across all treatments in the first year but was greater in the living mulch treatment in the second year. Our results highlight the potential of annual cover crops and living mulches for suppressing A. palmeri seedling recruitment and would be valuable tools as part of an integrated weed management strategy.
Russian thistle (Salsola tragus L.) is among the most troublesome weeds in cropland and ruderal semiarid areas of the Pacific Northwest (PNW). Predicting S. tragus emergence timing plays a critical role in scheduling weed management measures. The objective of this research was to develop and validate a predictive model of the seedling emergence pattern of S. tragus under field conditions in the PNW to increase the efficacy of control measures targeting this species. The relationship between cumulative seedling emergence and cumulative hydrothermal time under field conditions was modeled using the Weibull function. This model is the first to use hydrothermal time units (HTT) to predict S. tragus emergence and showed a very good fit to the experimental data. According to this model, seedling emergence starts at 5 HTT, and 50% and 90% emergence is completed at 56 HTT and 177 HTT, respectively. For model validation, independent field experiments were carried out. Cumulative seedling emergence was accurately predicted by the model, supporting the idea that this model is robust enough to be used as a predictive tool for S. tragus seedling emergence. Our model can serve as the basis for the development of decision support systems, helping farmers make the best decisions to control S. tragus populations in no-till fallow and spring wheat systems.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere