BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
A field study was conducted in 2009, 2010, and 2011 on a grower's field with a known population of glyphosate-resistant giant ragweed to determine potential control options utilizing a WideStrike® cotton variety. Glyphosate-resistant giant ragweed control and cotton response to herbicide applications were both assessed. Few herbicide treatments provided greater than 80% control. Glufosinate followed by glufosinate was the only treatment that provided greater than 90% control at each assessment timing. Other effective treatments were glufosinate alone, glufosinate plus glyphosate, glyphosate plus pyrithiobac, and glufosinate plus fluometuron. Results from this study indicate that few of the studied herbicide treatments provide effective control of glyphosate-resistant giant ragweed without reducing yield in WideStrike cotton. Treatments that had the highest level of giant ragweed control at all ratings and also had the highest yield included glufosinate followed by glufosinate, glufosinate plus pyrithiobac, and glufosinate plus fluometuron at either rate. However, glufosinate followed by glufosinate was the only treatment that resulted in greater than 90% control of giant ragweed without reducing crop yield.
Se realizõ un estudio de campo en 2009, 2010 y 2011 en el campo de un productor que tenĩa una poblaciõn de Ambrosia trifida resistente a glyphosate, para determinar opciones potenciales de control utilizando una variedad WideStrike® de algodõn. Se evaluõ el control de A. trifida resistente a glyphosate y la respuesta del algodõn a aplicaciones de herbicidas. Pocos tratamientos con herbicidas brindaron un control superior al 80%. Glufosinate seguido de glufosinate fue el ũnico tratamiento que brindõ un control superior al 90% en cada momento de evaluaciõn. Otros tratamientos efectivos fueron glufosinate solo, glufosinate más glyphosate, glyphosate más pyrithiobac, y glufosinate más fluometuron. Los resultados de este estudio indican que pocos de los tratamientos con herbicidas estudiados proveen un control efectivo de A. trifida resistente a glyphosate sin reducir el rendimiento del algodõn WideStrike. Los tratamientos que tuvieron los mayores niveles de control de A. trifida en todas las evaluaciones y además tuvieron los mayores rendimientos incluyeron: glufosinate seguido de glufosinate, glufosinate más pyrithiobac y glufosinate más fluometuron en cada dosis. Sin embargo, glufosinate seguido de glufosinate fue el ũnico tratamiento que resultõ en un control de A. trifida superior al 90% sin reducir el rendimiento del cultivo.
Field studies were conducted from 2007 to 2009 in East Lansing, MI to evaluate three residual herbicide programs, three POST herbicide application timings, and two POST herbicides in glyphosate- and glufosinate-resistant corn. Herbicide programs included a residual PRE-applied herbicide followed by (fb) POST application (residual fb POST), a residual herbicide tank-mixed with a POST herbicide (residual POST), and a nonresidual POST. Three POST herbicide application timings included early POST (EP), mid-POST (MP), and late POST (LP) at an average corn growth stage of V3/V4, V4/V5, and V5/V6, respectively. The two POST herbicides evaluated were glyphosate and glufosinate. Control of common lambsquarters and giant foxtail was evaluated 28 d after the LP application. Glyphosate often provided greater weed control than glufosinate. The LP application resulted in greater giant foxtail control compared with the EP application timing, which may be attributed to control of late-emerging weeds. The EP application timing improved common lambsquarters control compared with the LP application timing. The residual POST program resulted in greater weed control compared with the residual fb POST program in all years. The effect of residual herbicide program, POST herbicide, and POST application timing on corn grain yield varied by year. In 2007, the use of glyphosate resulted in higher grain yield compared with glufosinate. In 2008, corn grain yield was the highest in the PRE fb POST program and with POST applications at EP and MP. To provide the most consistent weed control and minimize the likelihood of grain yield reductions, a PRE fb POST program applied at EP or MP is recommended.
Nomenclature: Acetochlor; atrazine; glufosinate; glyphosate; common lambsquarters, Chenopodium album L.; giant foxtail, Setaria faberi Herrm; corn, Zea mays L.
En East Lansing, MI, se realizaron estudios de campo desde 2007 a 2009 para evaluar tres programas de herbicidas residuales, tres momentos de aplicación de herbicidas POST y dos herbicidas POST en maíz resistente a glyphosate y a glufosinate. Los programas de herbicidas incluyeron un herbicida residual aplicado PRE seguido de (fb) una aplicación POST (residual fb POST), y una aplicación no residual POST. Los tres momentos de aplicación POST incluyeron POST temprano (EP), POST medio (MP) y POST tardío (LP) a un estado de desarrollo promedio del maíz de V3/V4, V4/V5 y V5/V6, respectivamente. Los dos herbicidas POST evaluados fueron glyphosate y glufosinate. El control de Chenopodium album y Setaria faberi fue evaluado 28 d después de la aplicación LP. Glyphosate frecuentemente brindó mayor control de malezas que glufosinate. La aplicación LP resultó en mayor control de S. faberi comparada a la aplicación EP, lo cual podría ser atribuido al control de malezas de emergencia tardía. La aplicación EP mejoró el control de C. album comparada con la aplicación LP. El programa residual POST resultó en mayor control de malezas comparado con el programa residual fb POST en todos los años. El efecto del programa residual de herbicidas, de herbicidas POST y del momento de aplicación en el rendimiento de grano del maíz varió según el año. En 2007, el uso de glyphosate resultó en un mayor rendimiento de grano comparado con glufosinate. En 2008, el mayor rendimiento de grano del maíz se obtuvo en el programa PRE fb POST y con aplicaciones POST EP y MP. Para brindar un control de malezas más consistente y minimizar la probabilidad de reducciones en rendimiento de grano, se recomienda el programa PRE fb POST aplicado a EP o MP.
Palmer amaranth is one of the most troublesome weeds in the southeast. Significant reductions in cotton yield because of Palmer amaranth competition warrant intense control efforts consisting of both PRE and POST herbicides. Flumioxazin is a soil-active, protoporphyrinogen oxidase-inhibiting herbicide that is labeled for use in cotton 14 to 21 d before planting; however, shorter preplant application intervals could increase the duration of control from this herbicide. Flumioxazin was applied at 3 rates (0.03 and 0.06 kg ai ha−1 in 2009 and an additional rate of 0.09 kg ai ha−1 in 2010 and 2011) and 6 application timings (30, 20, 15, 10, 5, and 0 d before planting cotton). Cotton emergence, height, and yield were documented. In 2009, at the Jay and Citra, FL, sites, cotton emergence, plant height, and yield were not affected by any herbicide rate or timing. At Dawson, GA, in the same year, significant reduction in cotton stand counts were observed with application timings < 10 d before planting. Cotton height was reduced similarly at Dawson, GA, but recovered to levels equal to the control by 45 d after planting (DAP). It is believed that rainfall during cotton emergence resulted in this significant level of injury at Dawson, GA. In 2010 and 2011, at Citra, FL, cotton emergence was only reduced when 0.06 and 0.09 kg ha−1 were applied at planting. Cotton height showed a similar pattern with additional reductions in height at 0.03 kg ha−1 applied at planting and 0.09 kg ha−1 applied 5 d before planting. In 2010 and 2011, at Citra, FL, yield was reduced when 0.09 kg ha−1 flumioxazin was applied 5 d before planting and when 0.06 and 0.09 kg ha−1 were applied at planting. These results indicate that flumioxazin application intervals can be shortened with little crop impact likely to be seen at lower use rates. However, rainfall at crop emergence has the potential to significantly injure cotton and reduce yield.
Nomenclature: Flumioxazin; Palmer amaranth, Amaranthus palmeri S. Wats.; cotton, Gossypium hirsutum L.
Amaranthus palmeri es una de las malezas más problemáticas en el sureste. Reducciones significativas en el rendimiento del algodón producto de la competencia de A. palmeri ameritan intensos esfuerzos de control utilizando herbicidas PRE y POST. Flumioxazin es un herbicida activo en el suelo, que inhibe la enzima protoporphyrinogen oxidase y es etiquetado para su uso en algodón 14 a 21 d antes de la siembra. Sin embargo, períodos más cortos de aplicación pre siembra podrían incrementar la duración del control de este herbicida. Se aplicó flumioxazin a 3 dosis (0.03 y 0.06 kg ai ha−1 en 2009 y una dosis adicional de 0.09 kg ai ha−1 en 2010 y 2011) y en 6 momentos de aplicación (30, 20, 15, 10, 5, y 0 d antes de la siembra del algodón). La emergencia del algodón, altura, y rendimiento fueron documentados. En 2009, en los sitios Jay y Citra, FL, la emergencia del algodón, la altura de planta, y el rendimiento no fueron afectados por ninguna de las dosis o momentos de aplicación del herbicida. En Dawson, GA, en el mismo año, reducciones significativas en los conteos de algodón establecido fueron observados para los momentos de aplicación <10 d antes de la siembra. La altura del algodón fue reducida en formar similar en Dawson, GA, pero se recuperó a los mismos niveles que el testigo a 45 d después de la siembra (DAP). Se cree que la lluvia durante la emergencia del algodón resultó en este nivel de daño significativo en Dawson, GA. En 2010 y 2011, en Citra, FL, la emergencia del algodón fue reducida solamente cuando se aplicaron 0.06 y 0.09 kg ha−1 en la siembra. La altura
Studies were conducted in a screenhouse to determine the interaction of rice residue as mulch (0, 3, and 6 t ha−1) and herbicides (nontreated, oxadiazon at 0.5 and 1.0 kg ai ha−1, and pendimethalin at 1.0 and 2.0 kg ai ha−1) on seedling emergence and biomass of barnyardgrass, crowfootgrass, junglerice, and rice flatsedge. Regardless of the residue amount, crowfootgrass and junglerice were effectively controlled by all herbicide treatments. No seedlings of these weed species escaped the herbicides when applied in the presence of residue cover. There was no survival of barnyardgrass seedlings when both herbicides were applied on bare soil (without residue cover); however, some seedlings survived oxadiazon and pendimethalin when applied in the presence of residue cover. For rice flatsedge, the herbicide applications in the presence of residue cover resulted in lower weed control than in the absence of residue. These results suggest that some weed species can escape the application of PRE herbicides in conservation agriculture systems in which residue can bind soil-applied herbicides and result in lower efficacy.
Se realizaron estudios en un invernadero para determinar la interacción de los residuos del arroz como cobertura (0, 3 y 6 t ha−1) y herbicidas (testigo no-tratado, oxadiazon a 0.5 y 1.0 kg ai ha−1, y pendimethalin a 1.0 y 2.0 kg ai ha−1) sobre la emergencia de plántulas y la biomasa de Echinochloa crus-galli, Dactyloctenium aegyptium, Echinochloa colona y Cyperus iria. Sin importar la cantidad de cobertura, D. aegyptium y E. colona fueron controladas efectivamente por todos los tratamientos de herbicidas. Ninguna plántula de estas especies de malezas escaparon a los herbicidas cuando se aplicó en presencia de la cobertura con residuos de arroz. No hubo sobrevivencia de plántulas de E. crus-galli, cuando ambos herbicidas se aplicaron sobre suelo desnudo (sin cobertura de residuos); sin embargo, algunas plántulas sobrevivieron a oxadiazon y pendimethalin cuando estos se aplicaron en presencia de la cobertura de residuos. Para C. iria, las aplicaciones de herbicidas en presencia de la cobertura resultó en menor control que en la ausencia de residuos. Estos resultados sugieren que algunas especies de malezas pueden escapar a las aplicaciones de herbicidas PRE en sistemas de agricultura de conservación en los cuales los herbicidas aplicados al suelo pueden adherirse a los residuos disminuyendo su eficacia.
Pendimethalin and sulfentrazone are applied PRE in sunflower to control many grasses and broadleaf weeds. These herbicides have quite different physicochemical properties. Pendimethalin has a high carbon-referenced sediment partition coefficient (Koc)(17,200 L kg−1), with a low leaching potential, whereas sulfentrazone has a low Koc (43 L kg−1), with a high leaching potential. A 2-yr study was conducted to determine the dissipation of these two herbicides applied to a loamy sand soil. Pendimethalin dissipated in two phases, an initial rapid loss between application and 3 to 5 d after application (DAT) and then a slower rate of dissipation. The first, rapid phase was likely due to volatilization of the herbicide from the soil surface. Pendimethalin dissipated at a similar rate for the slower phase in 2008 and 2010 (time to 50% dissipation [DT50] was 43 d and 39 d, respectively). The dissipation of sulfentrazone, unlike pendimethalin, was not biphasic. The DT50 for sulfentrazone was different between the 2 yr (30 d and 14 d in 2008 and 2010, respectively). Pendimethalin remained primarily in the top 7.5 cm of the soil column, whereas sulfentrazone leached to at least 30 cm. The leaching of sulfentrazone depended on the timing of irrigation or precipitation after application. The more rapid loss of sulfentrazone in the top 30 cm of the soil column in 2010 could have been partially due to the herbicide leaching below the 30 cm depth that was sampled.
Nomenclature: Pendimethalin, sulfentrazone, sunflower, Helianthus annuus L.
En girasol, se aplica pendimethalin y sulfentrazone PRE para el control de muchas malezas gramíneas y de hoja ancha. Estos herbicidas tiene propiedades físico-químicas muy diferentes. Pendimethalin tiene un alto coeficiente de partición con referencia a carbon (KOC) (17,200 L kg−1), con un potencial de lixiviación bajo, mientras que sulfentrazone tiene bajo KOC (43 L kg−1), con alto potencial de lixiviación. Se realizó un estudio de 2 años para determinar la disipación de estos dos herbicidas al ser aplicados a un suelo franco-arenoso. Pendimethalin se disipó en dos fases, una pérdida inicial rápida entre aplicaciones y 3 a 5 días después de la aplicación (DAT) y después una tasa de disipación más lenta. La primera fase rápida se debió probablemente a la volatilización del herbicida en la superficie del suelo. Pendimethalin se disipó a una tasa similar durante la fase lenta en 2008 y 2010 (tiempo para la disipación del 50% [DT50] fue 43 d y 39 d, respectivamente). A diferencia de pendimethalin, la disipación de sulfentrazone no fue bifásica. La DT50 para el sulfentrazone fue diferente entre los 2 años (30 d y 14 d en 2008 y 2010, respectivamente). Pendimethalin permaneció principalmente en los 7.5 cm superficiales de la columna de suelo, mientras que sulfentrazone se lixivió a al menos 30 cm. La lixiviación de sulfentrazone dependió del momento de irrigación o precipitación después de la aplicación. La pérdida más rápida de sulfentrazone en los 30 cm superiores de la columna de suelo en 2010 podría deberse parcialmente a la lixiviación del herbicida a profundidades mayores a los 30 cm muestreados.
With the forthcoming release of the 2,4-D- and dicamba-resistance traits stacked with either glyphosate or glufosinate resistance, the use of 2,4-D or dicamba alone or in tank mix with glyphosate or glufosinate likely will increase the control of glyphosate-resistant weeds in soybean. There also is an increasing trend among soybean growers to apply POST herbicides in combination with fungicides, insecticides, and fertilizers to reduce trips over the field. Greenhouse experiments were conducted during 2011 and 2012 to evaluate glyphosate or glufosinate applications with growth regulator herbicides and other agrochemicals for the control of glyphosate-resistant horseweed and glyphosate-resistant common lambsquarters. In most cases, glyphosate or glufosinate application with 2,4-D or dicamba provided 80% or more control of glyphosate-resistant horseweed and glyphosate-resistant common lambsquarters. These studies demonstrate that performance of glufosinate alone and with agrochemicals was poor on glyphosate-resistant common lambsquarters. However, no differences in glyphosate-resistant common lambsquarters biomass were noted among treatments including glufosinate alone, glufosinate plus growth regulator herbicides, and glufosinate plus growth regulator herbicides plus agrochemicals. The agrochemicals lambda-cyhalothrin, manganese, and pyraclostrobin did not affect weed control by glyphosate or glufosinate combinations with growth regulator herbicides. Visible soybean injury was noted at 1 wk after treatment (WAT) only when glufosinate was applied with lambda-cyhalothrin or pyraclostrobin but no differences in visible injury were seen with these combinations at 3 WAT.
Nomenclature: 2,4-D; dicamba; glufosinate; glyphosate; lambda-cyhalothrin; manganese; pyraclostrobin; common lambsquarters, Chenopodium album L.; horseweed, Conyza canadensis (L.) Cronq.; soybean, Glycine max (L.) Merr.
Con la próxima liberación de cultivos con resistencia a 2,4-D y dicamba en combinación con resistencia a glyphosate o glufosinate, es probable que el uso de 2,4-D o dicamba solos o en mezclas en tanque con glyphosate o glufosinate incrementará el control de malezas resistentes a glyphosate en soya. También, hay un tendencia creciente de que los productores apliquen herbicidas POST en combinación con fungicidas, insecticidas y fertilizantes para reducir el número de pases de aplicación en campo. Se realizaron experimentos de invernadero durante 2011 y 2012 para evaluar aplicaciones de glyphosate o glufosinate con herbicidas reguladores de crecimiento y otros agroquímicos, para el control de Conyza canadensis y Chenopodium album resistentes a glyphosate. En la mayoría de los casos, las aplicaciones de glyphosate o glufosinate con 2,4-D o dicamba brindaron 80% de control o más de C. canadensis y C. album resistentes a glyphosate. Estos estudios demostraron que el desempeño de glufosinate solo y con agroquímicos fue pobre sobre C. album resistente a glyphosate. Sin embargo, no se notaron diferencias en la biomasa de C. album resistente a glyphosate entre tratamientos incluyendo a glufosinate solo, glufosinate más herbicidas reguladores de crecimiento y glufosinate más herbicidas reguladores de crecimiento más agroquímicos. Los agroquímicos lambda-cyhalothrin, manganese y pyroclostrobin no afectaron el control de malezas al combinar glyphosate o glufosinate con herbicidas reguladores de crecimiento. El daño visible en la soya se notó a 1 semana después del tratamiento (WAT) solamente cuando glufosinate fue aplicado
Field studies were conducted to evaluate Italian ryegrass control and winter wheat tolerance to applications of diclofop, mesosulfuron plus methylated seed oil (MSO) alone or with 30% urea ammonium nitrate (UAN), mesosulfuron plus thifensulfuron plus tribenuron plus MSO, mesosulfuron plus MCPA plus MSO, or flufenacet plus metribuzin. Treatments were applied to wheat PRE, two- to three-leaf wheat (2–3 LF) at Feekes stage 1.0 or to one- to two-tiller wheat (TILL) at Feekes stage 3.0, depending on label recommendations. Studies were conducted in Williamson, GA, and Plains, GA, from autumn 2003 to spring 2005. Italian ryegrass control was variable, depending on location and year. Maximum and most-consistent Italian ryegrass control (> 90%) occurred with mesosulfuron plus MSO and UAN. Without UAN, control of Italian ryegrass with mesosulfuron varied from 44 to 97%. That variability was partially attributed to unfavorable environmental conditions associated with cold night time temperatures at or below 0 C, following applications. Wheat injury observed in response to herbicide treatments was minimal (< 15%) and transient; wheat recovered with no differences in yield.
Nomenclature: Diclofop; flufenacet; mesosulfuron; metribuzin; thifensulfuron; tribenuron; Italian ryegrass, Lolium perenne L. ssp. multiflorum (Lam.) Husnot; wheat, Triticum aestivum L.
Se realizaron estudios de campo para evaluar el control de Lolium perenne ssp. multiflorum y la tolerancia del trigo de invierno a aplicaciones de diclofop, mesosulfuron más aceite de semilla metilado (MSO) solo o con 30% urea ammonium nitrate (UAN), mesosulfuron más thifensuluron más tribenuron más MSO, mesosulfuron más MCPA más MSO o flufenacet más metribuzin. Los tratamientos se aplicaron al trigo en PRE, a dos a tres hojas del trigo (2–3 LF) en el estado Feekes 1.0 o a uno a dos hijuelos (TILL) en el estado Feekes 3.0, dependiendo de las recomendaciones de las etiquetas. Los estudios se realizaron en Williamson, GA y en Plains, GA, desde el otoño de 2003 a la primavera de 2005. El control de L. perenne fue variable dependiendo del sitio y el año. El máximo control (>90%) se dio con mesosulfuron más MSO y UAN. Sin UAN, el control de L. perenne con mesosulfuron varió entre 47% y 97%. La variabilidad fue parcialmente atribuida a condiciones ambientales desfavorables asociadas a temperaturas nocturnas de 0 C o inferiores, después de las aplicaciones. El daño observado en el trigo en respuesta a los tratamientos con herbicidas fue mínimo (<15%) y transitorio. El trigo se recuperó y no hubo diferencias en rendimiento.
At the field scale, weeds generally appear aggregated rather than randomly distributed, and this aggregation is linked to the spatial heterogeneity of biotic and abiotic factors. Crop management practices shape the spatial pattern of weed infestations by modifying certain factors having an impact on weed emergence and growth. Although crop seeding is often the last in-field disturbance before crop and weed emergence, its effect on the distribution of weeds has received little attention in the literature. The purpose of this study was to assess the influence of the planting operation on weed cover and presence in corn fields using digital images to investigate the possibility of sensing the interrow to infer the presence or absence of weeds on the corn row. A total of 18 site-years under conventional tillage treated with a single POST application of herbicide were selected across seven locations. Image analysis, at the V2 to V4 growth stage of corn, was used to compare the weed cover in three zones: the undisturbed interrows, the corn rows, and the interrows compacted by tractor wheel traffic. For 61% of site-years, there was no significant difference among the zones. When there was a significant difference compared with the other two zones, the undisturbed interrow was usually less infested. Point-to-point comparisons of weed presence or absence (based on a threshold of five pixels) between the interrow and the corn row revealed 70 or 73% correspondence, depending on the type of interrow (undisturbed or tracked). However the error of inference of the corn row weed cover generated by sensing only adjacent interrows may be too high for efficient commercial weed control.
Nomenclature: Corn, Zea mays L.
A una escala de campo, las malezas generalmente aparecen distribuidas en forma agregada y no aleatoriamente, y este agregado está relacionado a la heterogeneidad espacial de los factores bióticos y abióticos. Las prácticas de manejo del cultivo dan forma a los patrones espaciales de las infestaciones de malezas, al modificar ciertos factores que impactan la emergencia y crecimiento de malezas. Aunque la siembra del cultivo es a menudo la última perturbación dentro del campo antes de que se de la emergencia del cultivo y de las malezas, su efecto sobre la distribución de las malezas ha recibido poca atención en la literatura. El objetivo de este estudio fue evaluar la influencia de la operación de siembra sobre la presencia y cobertura de malezas dentro de campos de maíz usando imágenes digitales para investigar la posibilidad de inferir la presencia o ausencia de malezas sobre la hilera de siembra, a partir de datos de los espacios entre-hileras del maíz. Un total de 18 sitios-años bajo labranza convencional tratados con una sola aplicación de herbicida fueron seleccionados a lo largo de siete localidades. Se usó análisis de imágenes, en los estados de crecimiento del maíz de V2 a V4, para comparar la cobertura de malezas en tres zonas: entre-hileras sin perturbación, en la hilera del maíz, y entre-hileras compactadas por el tráfico de las llantas del tractor Para el 61% de los sitios-años, no hubo diferencias significativas entre zonas. Cuando hubo una diferencia significativa en comparación con las otras dos zonas, las entre-hileras sin perturbación estuvieron usualmente menos infestadas. Comparaciones de punto-a-punto de la presencia o ausencia de malezas (con base en un umbral de cinco pixeles) entre la hilera del maíz y entre-hileras revelaron 70 ó 73% de correspondencia, dependiendo del tipo de entre-hilera (sin perturbación o con compactación por las llantas). Sin embargo, el error de la inferencia de la cobertura de malezas en la hilera del maíz, generada solamente con los datos de las entre-hileras adyacentes puede ser muy alto para un control de malezas eficiente a nivel comercial.
The introduction of 2,4-D-resistant crops stacked with glyphosate resistance will enable the use of 2,4-D and glyphosate for weed control in corn, cotton, and soybean. Because there is little reported on the effectiveness of 2,4-D plus glyphosate on summer annual weed control, the objective was to evaluate 2,4-D and glyphosate tank mixtures on summer annual weed control. Six rates of 2,4-D (0, 280, 420, 560, 840, and 1,120 g ae ha−1) and three rates of glyphosate (0, 840, and 1,120 g ae ha−1) were applied to common lambsquarters, common waterhemp, giant ragweed, giant foxtail, and velvetleaf. Glyphosate at 840 g ha−1 controlled all weeds 94 to 100%. Giant ragweed was controlled 99 to 100% by 2,4-D alone when rates were 280 g ha−1 or higher. Common lambsquarters, common waterhemp, and velvetleaf control increased as 2,4-D rates increased, with 1,120 g ha−1 providing 90 to 94% control.
Nomenclature: Glyphosate; 2,4-D; common lambsquarters, Chenopodium album L. CHEAL; common waterhemp, Amaranthus rudis Sauer AMATA; giant ragweed, Ambrosia trifida L. AMBTR; giant foxtail, Setaria faberi Herrm SETFA; velvetleaf, Abutilon theophrasti Medik. ABUTH; corn, Zea mays L.; cotton, Gossypium hirsutum L.; soybean, Glycine Max (L.) Merr.
La introducción de cultivos con resistencia a 2,4-D en combinación con resistencia a glyphosate hará posible el uso de 2,4-D y glyphosate para el control de malezas en maíz, algodón y soya. Debido a que hay pocos reportes sobre la efectividad de 2,4-D más glyphosate en el control de malezas anuales de verano, el objetivo fue evaluar mezclas en tanque de 2,4-D y glyphosate en el control de estas malezas. Seis dosis de 2,4-D (0, 280, 420, 560, 840 y 1120 g ae ha−1) y tres dosis de glyphosate (0, 840 y 1120 g ae ha−1) fueron aplicadas a Chenopodium album, Amaranthus rudis, Ambrosia trifida, Setaria faberi y Abutilon theophrasti. Glyphosate a 840 g ha−1 controló todas las malezas de 94 a 100%. A. trifida fue controlada 99 a 100% con 2,4-D solamente cuando las dosis fueron 280 g ha−1 o mayores. El control de C. album, A. rudis y A. theophrasti aumentó al incrementarse las dosis de 2,4-D, con 1120 g ha−1 brindando 90 a 94% de control.
Greenhouse experiments were conducted to determine the effects of herbicide placement on POST smooth crabgrass and annual bluegrass control. Soil-plus-foliar, soil-only, and foliar-only applications of indaziflam (52.5 g ai ha−1), dithiopyr (560 ai g ha−1), or quinclorac (840 g ai ha−1) were made to one-tiller smooth crabgrass plants. Similarly, indaziflam (52.5 g ha−1), foramsulfuron (29 g ai ha−1), or prodiamine (840 g ai ha−1) were applied to nontillering annual bluegrass plants in an identical manner. No differences in smooth crabgrass control were detected between soil-plus-foliar and soil-only applied indaziflam from 21 to 35 d after treatment (DAT). By 28 DAT, smooth crabgrass control and biomass reductions with these indaziflam treatments were ≥ 90% and not different than quinclorac. Comparatively, smooth crabgrass control with foliar-only applications of indaziflam never exceeded 28%. Responses on annual bluegrass were similar as soil-plus-foliar and soil-only applied indaziflam exhibited greater efficacy than indaziflam applied foliar-only. By 28 DAT, annual bluegrass control and aboveground biomass reductions with soil-plus-foliar and soil-only treatments were ≥ 86% and not different from foramsulfuron. Comparatively, foliar-only applications of indaziflam controlled annual bluegrass ≤ 2%. These results indicate that root absorption is required for POST control of smooth crabgrass and annual bluegrass with indaziflam. Further research is needed to determine if techniques to enhance indaziflam contact with soil will enhance POST smooth crabgrass and annual bluegrass control in the field.
Se realizaron experimentos de invernadero para determinar los efectos de la localización de herbicidas en el control POST de Digitaria ischaemum y Poa annua. Aplicaciones al suelo-más-foliar, solamente-suelo y solamente-foliar de indaziflam (52 g ai ha−1), dithiopyr (560 g ai ha−1) o quinclorac (840 g ai ha−1) fueron realizadas en plantas de D. ischaemum en estado de un hijuelo. Similarmente, indaziflam (52 g ai ha−1), foramsulfuron (29 g ai ha−1) o prodiamine (840 g ai ha−1) fueron aplicadas a plantas de P. annua sin hijuelos en forma idéntica. No se detectaron diferencias en el control de D. ischaemum entre suelo-más-foliar y solamente-suelo con indaziflam entre 21 y 35 d después del tratamiento (DAT). A 28 DAT, el control y la reducción de biomasa con estos tratamientos con indaziflam fueron ≥90% y no fueron diferentes del quinclorac. Comparativamente, el control de D. ischaemum con aplicaciones solamente-foliar de indaziflam nunca excedió 28%. Las respuestas de P. annua fueron similares, en tanto que las aplicaciones suelo-más-foliar y solamente-suelo de indaziflam exhibieron mayor eficacia que indaziflam aplicado solamente-foliar. A 28 DAT, el control y la reducción de biomasa aérea de P. annua con tratamientos suelo-más-foliar y solamente-suelo fueron ≥86% y no fueron diferentes al foramsulfuron. Comparativamente, aplicaciones solamente-foliar de indaziflam controlaron P. annua ≤2%. Estos resultados indican que se requiere absorción radicular para el control POST de D. ischa
Field experiments were conducted in 2006 and 2007 to evaluate the herbicidal activity of phenyl isothiocyanate (ITC) on yellow nutsedge, Palmer amaranth, and large crabgrass in tomato grown on two polyethylene-mulched types. Treatments included two mulch types (low density polyethylene [LDPE] mulch and virtually impermeable film [VIF] mulch) and phenyl ITC at 0, 15, 75, 150, 750, and 1,500 kg ha−1. A standard rate of methyl bromide/chloropicrin (67 : 33%) at 390 kg ha−1 under LDPE mulch was included for comparison. Regardless of mulch type, phenyl ITC at 1,452 (±133) and 1,719 (±426) kg ha−1 was required for broad-spectrum weed control equivalent to methyl bromide in 2006 and 2007, respectively. Tomato injury was ≥ 44% at the highest phenyl ITC rate of 1,500 kg ha−1 at 2 wk after transplanting (WATP) both years, irrespective of mulch type. Greater crop injury was observed from 750 kg ha−1 of phenyl ITC in 2006 (≥ 27%) than in 2007 (≤ 10%). The greater injury in 2006 was attributed to a higher phenyl ITC concentration because holes in the plastic mulch for transplanting were punched at the time of transplanting in 2006; whereas, in 2007 holes were punched 2 d before transplanting, allowing 2 d of aeration before transplanting. Tomato marketable yield at all rates of phenyl ITC was lower than with methyl bromide in 2006. However, in 2007, marketable yield in plots treated with phenyl ITC at 750 kg ha−1 was equivalent to methyl bromide. Overall, VIF mulch was no more effective than LDPE mulch at increasing weed control or improving the marketable yield of tomato either year.
En 2006 y 2007, se realizaron experimentos de campo para evaluar la actividad herbicida de phenyl isothiocyanate (ITC) sobre Cyperus esculentus, Amaranthus palmeri y Digitaria sanguinalis, en tomate producido con dos tipos de cobertura de polyethylene. Los tratamientos incluyeron dos tipos de cobertura (cobertura de polyethylene de baja densidad [LDPE] y cobertura de película virtualmente impermeable [VIF]) y phenyl ITC a 0, 15, 75, 150, 750 y 1,500 kg ha−1. Una dosis estándar de methyl bromide/chloropicrin (67:33%) a 390 kg ha−1 bajo cobertura LDPE fue incluida como comparación. Sin importar el tipo de cobertura, se requirió phenyl ITC a 1,452 (±133) y 1,719 (±426) kg ha−1 para alcanzar un control de malezas de amplio espectro equivalente a methyl bromide en 2006 y 2007, respectivamente. Dos semanas después del trasplante (WATP), en ambos años, el daño al tomate fue 44% a la dosis más alta de phenyl ITC de 1,500 kg ha−1, sin importar el tipo de cobertura. Un mayor daño al cultivo se observó en 2006 (≥27%) que en 2007 (≤10%), a 750 kg ha−1 de phenyl ITC. El mayor daño en 2006 fue atribuido a una mayor concentración de phenyl ITC porque los orificios en el plástico se hicieron al momento del trasplante en 2006, mientras que en 2007 los orificios se perforaron 2 días antes del trasplante, lo que permitió dos días de aireación antes del mismo. El rendimiento de tomate comercializable en todas las dosis de phenyl ITC fue menor que con methyl bromide en 2006. Sin embargo, en 2007, el rendimiento comercializable en las parcelas tratadas con phenyl ITC a 750 kg ha−1 fue equivalente a methyl bromide. En general, la cobertura VIF no fue más efectiva que la cobertura LDPE para incr
Flucarbazone controls certain grassy weeds in wheat and may have potential for controlling perennial ryegrass in tall fescue turf. The objective of these experiments was to investigate perennial ryegrass and tall fescue tolerance to flucarbazone at two application timings. In field experiments, flucarbazone applications in May were more injurious to both species than in February and March. Single applications of flucarbazone from 30 to 60 g ai ha−1 in May injured both species 35 to 50% and sequential treatments increased injury approximately twofold. Two applications of flucarbazone at 60 g ha−1 in May injured both grasses > 90%, similar to sequential applications of trifloxysulfuron at 29 g ai ha−1. In growth chamber experiments, injury from flucarbazone on both grasses increased as temperature increased from 10 to 30 C. Flucarbazone reduced total shoot biomass of both grasses at all temperatures after 4 wk. Overall, perennial ryegrass and tall fescue are tolerant to flucarbazone at moderate temperatures (10 to 20 C). However, injury increased substantially under warmer conditions (30 C), suggesting flucarbazone could control perennial ryegrass and tall fescue during late spring and early summer.
Flucarbazone controla varias malezas gramíneas en trigo y puede tener potencial para el control de Lolium perenne en el césped Festuca arundinacea. El objetivo de estos experimentos fue investigar la tolerancia a flucarbazone de L. perenne y F. arundinacea en dos momentos de aplicación. En experimentos de campo, las aplicaciones de flucarbazone en Mayo fueron más dañinas en ambas especies que las aplicaciones en Febrero y Marzo. Las aplicaciones de flucarbazone de 30 y 60 g ai ha−1 en Mayo dañaron ambas especies 35 y 50% y los tratamientos secuenciales incrementaron el daño aproximadamente al doble. Dos aplicaciones de flucarbazone a 60 g ha−1 en Mayo dañaron ambos zacates, similarmente a las aplicaciones secuenciales de trifloxysulfuron a 29 g ai ha−1. En cámaras de crecimiento, el daño causado por flucarbazone en ambos zacates aumentó cuando la temperatura incrementó de 10 a 30 C. Flucarbazone redujo la biomasa aérea en ambos zacates en todas las temperaturas después de 4 semanas. En general, L. perenne y F. arundinacea fueron tolerantes a flucarbazone a temperaturas moderadas (10 a 20 C). Sin embargo, el daño incrementó sustancialmente bajo condiciones más calientes (30 C), lo que sugiere que flucarbazone podría controlar L. perenne y F. arundinacea tarde en la primavera y temprano en el verano.
Flumioxazin is used in nursery production and landscape maintenance industries. In these situations, weed control provided by flumioxazin often lasts longer than that reported in soil. Our objective was to quantify flumioxazin longevity under conditions found in nursery production. Pots were filled with 6 : 1 (v/v) pine bark : sand mixture. This nonsoil media is typical of what is used for nursery crop production. Pots were treated with flumioxazin at either 0.28 or 0.42 kg ai ha−1, and subsequently sown with either hairy bittercress (two winter experiments) or spotted spurge (two summer experiments) at weekly intervals. Weed seed germination, emergence, and seedling establishment in the treated pots was compared with nontreated control and used as a proxy for herbicide activity. Flumioxazin provided approximately 7 wk of complete (100%) hairy bittercress control regardless of rate. However, a rate effect was evident in only one of the two experiments conducted with hairy bittercress. In both experiments with hairy bittercress, marginal and highly variable activity was still evident at 18 wk after treatment. Flumioxazin at 0.28 and 0.42 kg ha−1 provided 2- and 4-wk complete spotted spurge control, respectively. No spotted spurge control was evident after about 8 wk. Subjecting this less-variable data to nonlinear regression revealed that the time required for 50% reduction in flumioxazin activity was approximately 5.5 and 6.6 wk for the two rates, respectively. A column leaching study revealed that flumioxazin activity remained localized near the surface (0 to 4 cm). Therefore the dissipation observed was likely the result of in situ degradation and not displacement. The high organic matter content of the nonsoil media contributes to the observed persistence of flumioxazin activity.
Flumioxazin se usa en las industrias de producción de almácigos y de mantenimiento de paisajes. En estas situaciones el control de malezas brindado por flumioxazin suele durar más que lo reportado en suelo. Nuestro objetivo fue cuantificar la longevidad de flumioxazin bajo las condiciones que se encuentran en la producción de almácigos. Se llenaron macetas con una mezcla 6:1 (v/v) de corteza de pino:arena. Este medio sin suelo es típico en la producción de almácigos de cultivos. Las macetas fueron tratadas con flumioxazin a 0.28 ó 0.48 kg ai ha−1, y subsecuentemente sembradas con Cardamine hirsuta (dos experimentos de invierno) o Chamaesyce maculata (dos experimentos de verano) en intervalos semanales. Flumioxazin brindó aproximadamente 7 semanas de control completo (100%) de C. hirsuta sin importar la dosis. Sin embargo, el efecto de dosis fue evidente solamente en uno de los dos experimentos realizados con esta maleza. En ambos experimentos con C. hirsuta, una actividad marginal y altamente variable fue evidente todavía a 18 semanas después del tratamiento. Flumioxazin a 0.28 y 0.42 kg ha−1 brindó 2 y 4 semanas de control completo de C. maculata, respectivamente. No hubo un control evidente de C. maculata después de 8 semanas. Al someter estos datos menos variables a regresión no-lineal, se reveló que el tiempo requerido para reducir en 50% la actividad de flumioxazin fue aproximadamente 5.5 y 6.6 semanas para las dos dosis, respectivamente. Un estudio usando una columna de lixiviación reveló que la actividad de flumioxazin se mantuvo localizada cerca de la superficie (0 a 4 cm). Así, la disipación observada fue probablemente resultado de la degradación in situ y no del desplazamiento del herbicida. El alto contenido de materia orgánica del medio sin suelo contribuye a la persistencia observada de la actividad d
Greenhouse and field studies were conducted to determine tolerance of tomato to halosulfuron, imazosulfuron, and trifloxysulfuron herbicides applied through drip irrigation. In greenhouse studies, PRE- and POST-applied trifloxysulfuron caused greater tomato injury (14 and 54% injury, respectively) than PRE- and POST-applied halosulfuron (5 and 26% injury, respectively) or imazosulfuron (5 and 23% injury, respectively). All herbicide treatments in the greenhouse studies caused greater injury to tomato than the nontreated. Greater tomato injury was observed in the greenhouse from herbicides applied POST than when soil applied. Tomato injury from POST-applied halosulfuron, imazosulfuron, or trifloxysulfuron followed a linear relationship, with tomato injury increasing with increasing herbicide rate. Tomato photosynthetic rate did not differ among the herbicide treatments (32.7 to 55.0 μmol m−2 s−1) and the nontreated (38.0 to 55.0 μmol m−2 s−1). At 5 to 16 days after treatment (DAT), tomato treated with imazosulfuron POST (0.26 to 0.46 cm s−1) or trifloxysulfuron POST (0.27 to 0.51 cm s−1) had lower stomatal conductance compared to the stomatal conductance of the nontreated tomato (0.65 to 0.76 cm s−1). Chlorophyll content did not differ among treatments at 0 to 6 DAT. At 7 to 12 DAT, tomato treated with imazosulfuron POST (34.0 to 40.1 SPAD) and trifloxysulfuron POST (35.0 to 41.6 SPAD) had lower chlorophyll content compared to the nontreated (39.1 to 48.1 SPAD). In 2008 and 2009 field studies, no tomato injury was observed. Herbicide, herbicide application method, and herbicide rate had no effect on tomato height (73 to 77 cm 14 DAT, 79 to 84 cm 21 DAT) and total fruit yield (62,722 to 80,328 kg ha−1).
Nomenclature: Halosulfuron; imazosulfuron; trifloxysulfuron; tomato; Solanum lycopersicum L.
Se realizaron estudios de invernadero y de campo para determinar la tolerancia del tomate a halosulfuron, imazosulfuron y trifloxysulfuron aplicados a travõs de un sistema de riego por goteo. En los estudios de invernadero, trifloxysulfuron aplicado PRE y POST causõ más dańo al tomate (14 y 54%, respectivamente) que halosulfuron aplicado PRE y POST (5 y 26%, respectivamente) o imazosulfuron (5 y 23%, respectivamente). En los estudios de invernadero, todos los tratamientos de herbicidas causaron mayor daño al tomate que el testigo no-tratado. En el invernadero cuando se aplicaron los herbicidas POST, se observõ un mayor daño que cuando se aplicaron al suelo. El daño al tomate causado por halosulfuron, imazosulfuron o trifloxysulfuron aplicados POST siguiõ una relaciõn lineal, incrementándose el daño al tomate conforme incrementõ la dosis del herbicida. La tasa fotosintõtica del tomate no difiriõ entre los tratamientos de herbicidas (32.7 a 55.0 mol m-2 s-1) y el testigo no-tratado (38.0 a 55.0 mol m-2 s-1). De 5 a 16 dúas despuõs del tratamiento (DAT), el tomate tratado con imazosulfuron POST (0.26 a 0.46 cm s-1) o trifloxysulfuron (0.27 a 0.52 cm s-1) tuvo una menor conductancia estomática comparado con el tomate no-tratado (0.65 a 0.76 cm s-1). El contenido de clorofila no difiriõ entre tratamientos de 0 a 6 DAT. De 7 a 12 DAT, el tomate tratado con imazosulfuron POST (34.0 a 40.1 SPAD) and trifloxysulfuron (35.0 a 41.6 SPAD) tuvo un menor contenido de clorofila comparado con el testigo no-tratado (39.1 a 48.1 SPAD). En los estudios de campo en 2008 y 2009, no se observõ ningún daño al tomate. El herbicida, el mõtodo de aplicaciõn del herbicida y la dosis del herbicida no tuvieron efecto sobre la altura del tomate (73 a 77 cm 14 DAT, 79 a 84 cm 21 DAT) y el rendimiento total de fruto (62,722 a 80,328 kg ha-1).
Elephantgrass has been proposed as a potential feedstock for biofuel production in south Florida. To limit future invasion of escapes in sugarcane and vegetables, the response of newly established elephantgrass to glyphosate, clethodim, sethoxydim, asulam, and trifloxysulfuron was determined using dose–response curves. Log-logistic models were used to determine the herbicide dose required to produce 90% growth reduction (GR90). The GR90 values for shoot biomass at 21 d after treatment (DAT) were 477 g ae ha−1 of glyphosate, 262 g ai ha−1 of clethodim, 381 g ai ha−1 of sethoxydim, 12 kg ai ha−1 of asulam, and 94 g ai ha−1 of trifloxysulfuron. The GR90 values for root biomass at 35 DAT were 570 g ae ha−1 of glyphosate, 257 g ai ha−1 of clethodim, 432 g ai ha−1 of sethoxydim, 17 kg ai ha−1 of asulam, and 183 g ai ha−1 of trifloxysulfuron. Elephantgrass was predicted to exhibit 97, 98, 75, 1, and 5% mortality after application of glyphosate, clethodim, sethoxydim, asulam, and trifloxysulfuron, respectively, at the label use rates 35 DAT. Results suggest that glyphosate and clethodim will provide control of newly established elephantgrass at label use rates for spot treatments and in vegetables, respectively. Rates higher than the label use rate of sethoxydim will be required to provide acceptable control of newly established elephantgrass in vegetables. However, newly established elephantgrass was not controlled by asulam and trifloxysulfuron at label use rates, implying that control of escapes will be difficult in sugarcane.
Pennisetum purpureum ha sido propuesto como materia prima potencial para la producción de biocombustible en el sur de Florida. Para limitar futuras invasiones de escapes en caña de azúcar y vegetales, la respuesta de plantas recién establecidas de P. purpureum a glyphosate, clethodim, sethoxydim, asulam y trifloxysulfuron fue determinada usando curvas de respuesta a dosis. Modelos Log-logísticos fueron usados para determinar la dosis de herbicida requerida para producir una reducción del crecimiento del 90% (GR90). Los valores de GR90 para la biomasa aérea a 21 d después del tratamiento (DAT) fueron 477 g ae ha−1 de glyphosate, 262 g ai ha−1 de clethodim, 381 g ai ha−1 de sethoxydim, 12 kg ai ha−1 de asulam y 94 g ai ha−1 de trifloxysulfuron. Los valores de GR90 para la biomasa radicular a 35 DAT fueron 570 g ae ha−1 de glyphosate, 257 g ai ha−1 de clethodim, 432 g ai ha−1 de sethoxydim, 17 kg ai ha−1 de asulam y 183 g ai ha−1 de trifloxysulfuron. Se predijo que P. purpureum exhibiría 97, 98, 75, 1 y 5% de mortalidad después de la aplicación de glyphosate, clethodim, sethoxydim, asulam y trifloxysulfuron, respectivamente, a las dosis de uso según las etiquetas a 35 DAT. Los resultados sugieren que glyphosate y clethodim brindarán control de plantas recién establecidas de P. purpureum a las dosis de uso según las etiquetas para aplicaciones localizadas y en vegetales, respectivamente. Dosis superiores a las de la etiqueta serán requeridas para que sethoxydim brinde control aceptable de plantas de P. purpureum recién establecidas en vegetales. Sin embargo, estas plantas no fueron controladas con asulam y trif
Weed control by heat or flaming typically uses flames to burn small weeds, directed away from desired crops. This research studied an enclosed flaming system for weed control before turfgrass establishment. Field research trials were conducted to explore the efficacy of a PL-8750 flame sanitizer at two application timings. Treatments included various application methods of PL-8750 flame sanitizer and common thermal and chemical weed control methods. Data were weed control relative to the control treatment. Species evaluated included carpetweed, Virginia buttonweed, spotted spurge, large crabgrass, goosegrass, old world diamond-flower, cocks-comb kyllinga, and yellow nutsedge. Turfgrass establishment was not successful in summer but was successful in fall. Fall-application timing trials resulted in > 60% tall fescue establishment at 6 wk after seeding (WAS) for all treatments. Summer-application timing trials resulted in unacceptable turfgrass establishment (≤ 18%) for all evaluated turfgrass species at 6 WAS. Broadleaf and grassy weeds were better controlled compared with sedge weeds. Overall, solarization; covered, emerged-weed flaming; and double applications of covered, emerged-weed flaming were the most successful treatments. Solarization controlled carpetweed, Virginia buttonweed, spotted spurge, large crabgrass, and goosegrass > 80% at 6 WAS. Weed control across thermal treatments were equal to or greater than the comparison chemical treatment (dazomet at 389 kg ha−1). Results indicate thermal weed control has potential for reducing weed populations before turfgrass establishment.
Nomenclature: Basamid; dazomet; carpetweed, Mollugo verticillata L. MOLVE; cocks-comb kyllinga, Kyllinga squamulata Thonn. ex Vahl; goosegrass, Eleusine indica (L.) Gaertn. ELEIN; large crabgrass, Digitaria sanguinalis (L.) Scop. DIGSA; old world diamond-flower, Oldenlandia corymbosa L. OLDCO; spotted spurge, Chamaesyce maculata L. EPHMA; Virginia buttonweed,Diodia virginiana L. DIQVI; yellow nutsedge, Cyperus esculentus L. CYPES; tall fescue, Lolium arundinaceum (Schreb.) S.J. Darbyshire.
El control de malezas por calor o llamas usa típicamente llamas para quemar malezas pequeñas al tiempo que se evita el cultivo deseado. Esta investigación estudió un sistema cubierto de llamas para el control de malezas antes del establecimiento del césped. Se realizaron estudios de campo para explorar la eficacia de un desinfectante de llama PL-8750 en dos momentos de aplicación. Los tratamientos incluyeron varios métodos de aplicación del desinfectante de llama PL-8750 y métodos comunes de control de malezas térmico y químico. Los datos fueron control de malezas relativo al tratamiento testigo. Las especies evaluadas incluyeron Mollugo verticillata, Diodia virginiana, Chamaesyce maculata, Digitaria sanguinalis, Eleusine indica, Oldenlandia corymbosa, Kyllinga squamulata y Cyperus esculentus. El establecimiento del césped no fue exitoso en el verano, pero sí lo fue en el otoño. Los estudios de momento de aplicación en el otoño resultaron en un establecimiento >60% de Lolium arundinaceum a 6 semanas después de la siembra (WAS) para todos los tratamientos. Los estudios de momento de aplicación en el verano resultaron en un establecimiento inaceptable del césped (≤18%) para todas las especies de césped evaluadas a 6 WAS. Las malezas de
Options for suppressing zoysiagrass seedheads in managed turfgrass systems are limited. Experiments were conducted in 2010 and 2011 evaluating the use of imazamox (26, 52, and 70 g ai ha−1) or imazapic (52 g ai ha−1) for ‘Zenith' and ‘Meyer' zoysiagrass seedhead suppression. Imazamox and imazapic at ≥ 52 g ai ha−1 suppressed Zenith zoysiagrass seedheads ≥ 95% at 2 to 6 wk after initial treatment (WAIT) each year. Slight injury (< 10%) was observed with these treatments; however, effective seedhead suppression resulted in increased (i.e., darker) green color from 8 to 15 WAIT each year. Relative chlorophyll index values for imazamox- and imazapic-treated plots ranged from 100 to 147% of the nontreated control in 2010 and 89 to 125% of the nontreated in 2011. On Meyer zoysiagrass, imazamox and imazapic at ≥ 52 g ha−1 reduced seedhead counts greater than 90% in both Tennessee and Indiana. However, significant (> 25%) injury was reported with these treatments at one experimental location. Although imazamox and imazapic have efficacy for zoysiagrass seedhead suppression, additional studies are needed to determine factors affecting zoysiagrass injury potential from imazamox and imazapic applications.
Nomenclature: Imazamox; imazapic; zoysiagrass, Zoysia japonica Steud. ‘Zenith' and ‘Meyer'.
Las opciones para suprimir las inflorescencias de Zoysia japonica en céspedes manejados son limitadas. En 2010 y 2011 se realizaron experimentos para evaluar el uso de imazamox (26, 52 y 70 g ai ha-1) o imazapic (52 g ai ha-1) para la supresión de inflorescencias de Z. japonica ‘Zenith’ y ‘Meyer’. Imazamox e imazapic a 52 g ai ha-1 suprimió las inflorescencias de Zenith ≥95% a 2-6 semanas después del tratamiento inicial (WAIT) en cada año. Un ligero daño (<10%) fue observado con estos tratamientos. Sin embargo, la efectiva supresión de inflorescencias resultó en un incremento del color verde (i.e. más oscuro) desde 8 hasta 15 WAIT en cada año. Los valores relativos de índice de clorofila para lotes tratados con imazamox e imazapic variaron de 100 a 147% en comparación con el testigo no-tratado en 2010 y de 89 a 125% en 2011. En Meyer, imazamox e imazapic a ≥52 g ai ha-1 redujeron los conteos de inflorescencias en más de 90% en Tennessee e Indiana. Sin embargo, con estos tratamientos se reportó un daño significativo (>25%) en uno de los sitios experimentales. Aunque imazamox e imazapic muestran eficacia para la supresión de inflorescencias de Z. japonica, se necesitan estudios adicionales para determinar los factores que afectan el daño potencial de Z. japonica con aplicaciones de estos herbicidas.
Weed management in green onion continues to be a challenge for vegetable growers in Ohio. Field experiments were conducted from 2005 to 2009 to evaluate oxyfluorfen efficacy on common purslane and prostrate pigweed and green onion tolerance when applied POST at 0, 30, 70, 105, and 290 g ai ha−1 approximately 3 wk after planting. No crop injury was observed from any of the herbicide rates, except in 2009 when 209 g ha−1 oxyfluorfen resulted in 10% injury at 7 d after treatment. The transient injury did not reduce green onion yield. Green onion yield ranged from 1.8 to 2.2 kg plot−1 in 2006 and 1.3 to 1.5 kg plot−1 in 2009. In 2007 yield increased linearly from 1.9 to 3.0 kg plot−1 with oxyfluorfen rates of 0 to 105 g ha−1. Common purslane control increased as the rate of oxyfluorfen increased. Application of oxyfluorfen at 70 to 105 g ha−1 provided the best control of common purslane, ranging from 61 to 95% across the years. Similar control results were observed for prostrate pigweed. Prostrate pigweed control with 70 to 105 g ha−1 ranged from 40 to 93% from 2005 to 2009. These results suggest that green onion tolerates oxyfluorfen rates of 70 to 105 g ha−1, and these rates provide common purslane and prostrate pigweed control that growers would find acceptable. Registration of the water-based formulation of oxyfluorfen would provide growers an opportunity to control weeds and reduce the need for hand labor.
Nomenclature: Oxyfluorfen; common purslane, Portulaca oleraceae L. POROL; prostrate pigweed, Amaranthus blitoides S. Wats AMABL; green onion, Allium cepa L. ALLCE.
El manejo de malezas en cebolla verde o inmadura continúa siendo un reto para los productores de vegetales en Ohio. Se realizaron experimentos de campo desde 2005 a 2009 para evaluar la eficacia de oxyfluorfen en el control de Portulaca oleracea y Amaranthus blitoides y la tolerancia de la cebolla verde, cuando este se aplicó POST a 0, 30, 70, 105, y 290 g ai ha−1 aproximadamente 3 semanas después de la siembra. No se observó daño al cultivo con ninguna de las dosis del herbicida, excepto en 2009 cuando 209 g ha−1 de oxyfluorfen resultaron en 10% de daño 7 d después del tratamiento. El daño transitorio no redujo el rendimiento de la cebolla verde. Los rendimientos estuvieron entre 1.8 y 2.2 kg plot−1 en 2006 y 1.3 a 1.5 kg plot−1 en 2009. En 2007, el rendimiento incrementó en forma lineal desde 1.9 a 3.0 kg plot−1 con las dosis de oxyfluorfen de 0 a 105 g ha−1. El control de P. oleracea incrementó conforme la dosis de oxyfluorfen aumentó. La aplicación de oxyfluorfen de 70 a 105 g ha−1 brindó el mejor control de P. oleracea, el cual varió de 61 a 95% durante los años evaluados. Resultados de control similares se observaron para A. blitoides. El control de esta maleza con 70 a 105 g ha−1 varió entre 40 y 93% del 2005 al 2009. Estos resultados sugieren que la cebolla verde tolera dosis de oxyfluorfen de 70 a 105 g ha−1, y que estas dosis proveen control de P. oleracea y A. blitoides que los productores encontrarían aceptable. El registro para cebolla verde de oxyfluorfen en su formulación basada en agua brindaría a los productores una oportunidad de controlar malezas y reducir la necesidad de deshierba manual.
Cultivation is a proven means of weed control in organic peanut. However, weeds present in-row often escape control. Research trials were conducted in Ty Ty, GA to modify cultural practices to help suppress weed emergence in-row. Modified cultural practices were three row pattern/seeding rate combinations; twin rows (four rows on a seedbed) seeded at the recommended (1X) seeding rate that produced 13 seed m−1 in each row, twin rows seeded at the 2X seeding rate that produced 23 seed m−1 in each row, and wide rows (two rows on seedbed) seeded at the recommended seeding rate that produced 23 seed m−1. Four cultivation regimes were evaluated; cultivation with a tine weeder at weekly intervals for 6 wk, cultivation with a tine weeder at weekly intervals for 8 wk, scouring with a brush hoe at vegetative emergence followed by the tine weeder for 6 wk, and a noncultivated control. There were no interactions between row pattern/seeding rates and cultivation regimes for any parameter measured. There was inconsistent response of weed control and peanut yield to row pattern/seeding rates. Weed control and peanut yields were similar with tine weeding for 6 wk, 8 wk, or with the brush hoe followed by the tine weeder. Weed management in organic peanut was not improved by altering peanut cultural practices that facilitate quicker canopy closure, and the use of narrow row patterns should not be based on attempts to improve weed control in organic peanut. Narrow row patterns provide other benefits to organic peanut production and those attributes should influence decisions on the choice of row pattern, not weed control.
Cultivar es un método comprobado para el control de malezas en maní orgánico. Sin embargo, las malezas presentes en la línea de siembra a menudo escapan al control. Se realizaron estudios en Ty Ty, GA para modificar las prácticas culturales para ayudar a suprimir la emergencia de malezas en la línea de siembra. Las prácticas culturales modificadas fueron tres combinaciones de patrones y de densidades de siembra; líneas gemelas (cuatro líneas en cada cama de siembra) sembradas a la densidad recomendada (1X) que produjo 13 semillas m−1 en cada línea, líneas gemelas sembradas a una densidad 2X que produjo 23 semillas m−1 en cada línea, y líneas amplias (2 líneas por cama de siembra) sembradas a la densidad recomendada lo que produjo 23 semillas m−1. Se evaluaron cuatro regímenes de cultivo; cultivo semanal con un rastrillo de púas durante 6 semanas, cultivo semanal con rastrillo de púas durante 8 semanas, barrido con azadón de cepillo al momento de emergencia vegetativa seguido por un cultivo con el rastrillo de púas durante 6 semanas, y un tratamiento testigo sin cultivo. No hubo interacciones entre el patrón/densidad de siembra y el régimen de cultivo para ninguno de los parámetros medidos. La respuesta al patrón/densidad de siembra en control de malezas y rendimiento del maní fue inconsistente. El control de malezas y los rendimientos del maní fueron similares con el cultivo con el rastrillo de púas durante 6 y 8 semanas, o con el azadón de cepillo seguido por el rastrillo de púas. El manejo de malezas en maní orgánico no mejoró al alterar las prácticas culturales que facilitaron un cierre del dosel más rápido. El uso de patrones angostos de líneas
Aminocyclopyrachlor (AMCP) is a herbicide with an auxin-mimic mode of action. AMCP is registered for use in the United States on right-of-way and other noncropland sites, causing concern for potential off-target spray drift. The objectives of this study were to evaluate cantaloupe and eggplant response to simulated AMCP spray drift in the field and cotton response in the greenhouse. Cantaloupe and eggplant responded with little to no injury from drift rates up to 10 g AMCP ha−1, roughly 3.2% of the maximum labeled use rate for right-of-way weed control. Slight yield reductions occurred but were not consistent between 2008 and 2009. Therefore, eggplant and cantaloupe injury and yield-reduction potential from AMCP spray drift is low. Cotton response to AMCP drift was compared to similar spray drift rates of 2,4-D and aminopyralid. Cotton responded with injury and reductions in height and dry mass from all three herbicides. Responses were greatest from AMCP, indicating AMCP is potentially more damaging to cotton than 2,4-D or aminopyralid if spray drift occurs, when comparing percentages of labeled rates.
Aminocyclopyrachlor (AMCP) es un herbicida con un modo de acción similar a las auxinas. AMCP está registrado en los Estados Unidos para el uso en bordes de caminos y en otros sitios no-agrícolas, lo que causa preocupación por el riesgo potencial de deriva hacia lugares no deseados. Los objetivos de este estudio fueron evaluar la respuesta del melón 'cantaloupe' y la berenjena a la deriva simulada de AMCP en el campo y la respuesta del algodón en el invernadero. El melón y la berenjena mostraron poco a ningún daño en respuesta a dosis de deriva de hasta 10 g AMCP ha−1, aproximadamente 3.2% de la dosis máxima de uso según la etiqueta para control de malezas en bordes de caminos. Ligeras reducciones en rendimiento ocurrieron, pero no fueron consistentes entre 2008 y 2009. De esta forma, el potencial daño y reducción en el rendimiento del melón y la berenjena producto de la deriva de AMCP es bajo. La respuesta del algodón a la deriva de AMCP fue comparable a dosis de deriva similares de 2,4-D y aminopyralid. El algodón respondió con daño y reducciones en altura y materia seca a los tres herbicidas. Las respuestas fueron mayores a AMCP, indicando que AMCP es potencialmente más dañino al algodón que 2,4-D o aminopyralid, si ocurre deriva cuando se comparan porcentajes de las dosis de etiqueta.
Field trials were conducted in 2009 and 2010 near Paterson, WA and Ontario, OR to evaluate weed control and potato tolerance to PRE-applied pyroxasulfone, saflufenacil, and KSU12800 herbicides. Pyroxasulfone at 0.09 to 0.15 kg ai ha−1 and saflufenacil at 0.05 to 0.07 kg ai ha−1 applied PRE alone or in tank mixes with several currently labeled herbicides did not injure potatoes at either site in both years. KSU12800 at 0.15 kg ai ha−1 injured potatoes from 18 to 26% for a period of about 4 wk after emergence at Ontario both years. In addition, KSU12800 at 0.29 and 0.45 kg ha−1 injured potatoes from 17 to 38% at 17 d after treatment (DAT) at Paterson in 2009. Pyroxasulfone at 0.15 kg ha−1 controlled barnyardgrass, hairy nightshade, and redroot pigweed 96% or greater, but control of common lambsquarters was variable. Saflufenacil at 0.07 kg ha−1 provided greater than 93% control of common lambsquarters, hairy nightshade, and redroot pigweed at both sites in 2010. KSU12800 at 0.15 kg ha−1 controlled common lambsquarters, hairy nightshade, and redroot pigweed 99% or more at Ontario, but only 87 to 93% at Paterson in 2010. These herbicides did not reduce yield of U.S. no. 1 tubers or total tuber yields compared to standard labeled herbicide treatments when weed control was adequate.
Nomenclature: KSU12800; pyroxasulfone; saflufenacil; barnyardgrass, Echinochloa crus-galli (L.) Beauv. ECHCG; common lambsquarters, Chenopodium album L. CHEAL; hairy nightshade, Solanum physalifolium Rusby SOLSA; redroot pigweed, Amaranthus retroflexus L. AMARE; potato, Solanum tuberosum L. ‘Ranger Russet'.
Se realizaron experimentos de campo en 2009 y 2010 cerca de Paterson, WA y Ontario, OR para evaluar el control de malezas y la tolerancia de la papa a los herbicidas pyroxasulfone, saflufenacil y KSU12800 aplicados PRE. Se aplicó pyroxasulfone a dosis de 0.09 a 0.15 kg ai ha−1 y saflufenacil de 0.05 a 0.07 kg ha−1 solos o en mezclas en tanque con varios herbicidas registrados actualmente para papa sin causar daño al cultivo en ninguno de los sitios en ambos años. KSU12800 a 0.15 kg ha−1 dañó las papas de 18 a 26% por un período de 4 semanas después de la emergencia, en Ontario en ambos años. Adicionalmente, KSU12800 a 0.29 y 0.45 kg ha−1 dañó la papa de 17 a 38% a 17 días después del tratamiento (DAT) en Paterson en 2009. Pyroxasulfone a 0.15 kg ha−1 controló Echinochloa crus-galli, Solanum physalifolium y Amaranthus retroflexus 96% o más, pero el control de Chenopodium album fue variable. Saflufenacil a 0.07 kg ha−1 brindó un control superior a 93% de C. album, S. physalifolium y A. retroflexus en ambos sitios en 2010. KSU12800 a 0.15 kg ha−1 controló C. album, S. physalifolium y A. retroflexus 99% o más en Ontario, pero solamente 87 a 93% en Paterson en 2010. Estos herbicidas no redujeron el rendimiento de los tubérculos U.S. no. 1 ni el rendimiento total de tubérculos en comparación con los tratamientos con herbicidas estándar con etiqueta para este cultivo cuando el control de malezas fue adecuado.
Field dodder is a parasitic plant that attaches to the stems and leaves of broadleaf plants, including weeds, field crops, vegetables, and ornamentals, throughout most agricultural regions of the world. Effective field dodder control is extremely difficult to achieve, due to the nature of attachment and close association between host and parasite, which requires a highly effective and selective herbicide to destroy the parasite without crop damage. Previous studies have demonstrated the tolerance of certain tomato varieties to dodder parasitism. The aim of the present study was to evaluate the ability of sulfonylurea herbicides to control field dodder under greenhouse and field conditions. Two greenhouse studies and three field studies were conducted to evaluate the efficiency and crop selectivity of the sulfonylurea herbicides sulfosulfuron, rimsulfuron, halosulfuron, and flazasulfuron in controlling field dodder parasitizing tomato plants. Sulfosulfuron at 50 or 100 g ai ha−1 was effective and safe for tomato in field dodder control, while the other herbicides exhibited little or no dodder control.
Nomenclature: Flazasulfuron; halosulfuron; rimsulfuron; sulfosulfuron; field dodder, Cuscuta campestris Yuncker; tomato, Lycopersicon esculentum L.
Cuscuta campestris es una planta parasítica que se adhiere a los tallos y las hojas de plantas de hoja ancha, incluyendo malezas, cultivos extensivos, vegetales y ornamentales enla mayoría de las regiones agrícolas del mundo. El control efectivo de C. campestris es extremadamente difícil de alcanzar debido a la naturaleza de adherencia y asociación cercana entre el hospedero y el parásito, lo que requiere un herbicida selectivo altamente efectivo para destruir el parásito sin dañar al cultivo. Estudios previos han demostrado la tolerancia de ciertas variedades de tomate al parasitismo del C. campestris. El objetivo del presente estudio fue evaluar la habilidad de herbicidas sulfonylureas para controlar C. campestris bajo condiciones de invernadero y de campo. Dos estudios de invernadero y tres estudios de campo se realizaron para evaluar la eficiencia y selectividad en el cultivo de los herbicidas sulfonylurea: sulfosulfuron, rimsulfuron, halosulfuron y flazasulfuron en el control de C. campestris parasitando plantas de tomate. Sulfosulfuron a 50 ó 100 g ia ha−1 fue efectivo y seguro al tomate para el control de C. campestris, mientras que los otros herbicidas mostraron poco o ningún control de esta maleza.
Field studies were conducted in 2011 at the Malheur Experiment Station, Ontario, OR and Prosser, WA to evaluate the effect of simulated glyphosate drift on direct-seeded dry bulb onion. Glyphosate was applied at 8.6, 25.8, 86, 290, 434, and 860 g ae ha−1 when onion plants were at the flag-, two-, four-, and six-leaf stages. Onion foliar injury was directly related to the glyphosate dose and varied with application timing. Foliar injury at 7 d after treatment (DAT) ranged from 0 to 12% for glyphosate ≤ 25.8 g ha−1. Foliar injury increased at 21 DAT when glyphosate was applied ≥ 25.8 g ha−1 to plants at the flag- and four-leaf stage, and ranged from 24 to 99%. The 50%-injury glyphosate dose at 21 DAT was lowest when onion was treated at the four-leaf and flag stages and was estimated to be 76.8 and 81 g ha−1, respectively. Onion injury severity increased when glyphosate was applied at ≥ 86 g ha−1 and eventually resulted in plant death at 860 g ha−1. Foliar injury was inversely correlated to U.S. no. 1 onion yield. Onions displayed sensitivity to very low glyphosate doses especially at the four-leaf stage. Shikimic acid accumulation increased with the increase in glyphosate dose and was positively correlated with foliar injury and negatively correlated with plant height and onion yield.
Nomenclature: Glyphosate; onion, Allium cepa L. ‘Vaquero'
Se realizaron estudios de campo en 2011 en la Estación Experimental Malheur, Ontario, OR y Prosser, WA para evaluar el efecto de la deriva simulada de glyphosate sobre el bulbo de cebolla seca de siembra directa. Se aplicó glyphosate a 8.6, 25.8, 86, 290, 434 y 860 g ae ha−1 cuando las plantas de cebolla estaban en los estadios de hoja bandera, dos, cuatro y seis hojas. El daño foliar de la cebolla estuvo directamente relacionado a la dosis de glyphosate y varió con el momento de aplicación. El daño foliar a 7 días después del tratamiento (DAT) varió de 0 a 12% para glyphosate a ≤25.8 g ha−1. El daño foliar incrementó a 21 DAT cuando glyphosate se aplicó a ≥25.8 g ha−1 a plantas en los estados de bandera y cuatro hojas y varió de 24 a 99%. La dosis más baja de 50% de daño de glyphosate a 21 DAT se observó cuando la cebolla fue tratada en los estados de cuatro hojas y hoja bandera y se estimó que fue 76.8 y 81 g ha−1, respectivamente. La severidad del daño de la cebolla aumentó cuando glyphosate se aplicó a ≥86 g ha−1 y eventualmente resultó en la muerte de la planta a 860 g ha−1. El daño foliar estuvo inversamente correlacionado con el rendimiento de cebolla U.S. no. 1. La cebolla mostró sensibilidad a dosis muy bajas de glyphosate especialmente en el estado de cuatro hojas. La acumulación de shikimic acid aumentó con el incremento en la dosis de glyphosate y estuvo positivamente correlacionada con el daño foliar y negativamente correlacionada con la altura de la planta y el rendimiento de la cebolla.
Eight field studies were conducted over a 3-yr period from 2008 to 2010 in Ridgetown, Ontario, Canada, to determine the cumulative stress caused by simulated glyphosate spray drift followed by an in-crop application of metribuzin in processing tomato. As the simulated glyphosate spray drift rate increased so did the degree of injury to the tomatoes. At a simulated spray drift rate of 22.5 g ae ha−1 (2.5% of the recommended glyphosate field rate), a 23% decrease in red tomato yield was observed. Yield reductions increased to 88% of the control when 180 g ae ha−1 glyphosate (20% of the recommended field rate) was applied. Similarly when simulated spray drift rates were followed 3 to 5 d later with an in-crop application of metribuzin at 250 g ai ha−1, tomato yields decreased by 22 to 85% depending on glyphosate rate applied. A transient synergistic interaction was observed only when 22.5 g ae ha−1 glyphosate was followed by metribuzin. The synergistic response was no longer evident by the 28-d injury rating. Herbicide interactions were additive for crop injury, dry weight, fruit counts, and yield when glyphosate spray drift rates of 45, 90, or 180 g ae ha−1 were followed by metribuzin.
Nomenclature: Glyphosate; metribuzin; tomato, Solanum lycopersicon L.
Se realizaron ocho estudios de campo a lo largo de un periodo de 3 años desde 2008 a 2010 en Ridgetwon, Ontario, Canada, para determinar el estrés acumulativo causado por la deriva de aspersión simulada de glyphosate seguido de una aplicación dentro del cultivo de metribuzin en tomate para procesamiento. Al incrementarse la dosis de deriva simulada de glyphosate, se incrementó el nivel de daño en el tomate. A una dosis de deriva simulada de 22.5 g ae ha−1 (2.5% de la dosis de campo recomendada de glyphosate), se observó una disminución del 23% en el rendimiento de tomate rojo. Las reducciones en el rendimiento se incrementaron al 88% en comparación con el testigo cuando se aplicó glyphosate a 180 g ae ha−1 (20% de la dosis de campo recomendada). Similarmente, cuando la deriva simulada fue seguida de 3 a 5 días después con una aplicación dentro del cultivo de metribuzin a 250 g ai ha−1, los rendimientos del tomate disminuyeron 22 a 85% dependiendo de la dosis aplicada de glyphosate. Una interacción sinérgica transitoria se observó solamente cuando se aplicó glyphosate a 22.5 g ae ha−1 seguido por metribuzin. La respuesta sinérgica ya no fue evidente al momento de la evaluación de daño 28 días después del tratamiento. Las interacciones de herbicidas fueron aditivas para el daño del cultivo, peso seco, conteo de frutos y rendimiento cuando las dosis de aspersiones de deriva simulada de glyphosate fueron 45, 90 ó 180 g ae ha−1 y seguidas por metribuzin.
Methyl bromide is a common fumigant for effective weed control in polyethylene-mulched vegetable crops. However, the ban on methyl bromide in the United States has created a need to find a suitable alternative. This study investigated the herbicidal efficacy of phenyl isothiocyanate (ITC) as a methyl bromide alternative for weed control in polyethylene-mulched bell pepper during 2006 and 2007. Six rates of phenyl ITC (0, 15, 75, 150, 750, 1,500 kg ha−1) under low-density polyethylene (LDPE) or virtually impermeable film (VIF) mulch were tested against yellow nutsedge, Palmer amaranth, and large crabgrass. Additionally, a standard treatment of methyl bromide/chloropicrin (67 : 33%) at 390 kg ha−1 under LDPE mulch was included for comparison. VIF mulch provided no advantage over LDPE mulch in either improving weed control or marketable yield in bell pepper. Unacceptable pepper injury (≥ 60%) occurred at the highest phenyl ITC rate of 1,500 kg ha−1 at 2 WATP in both years, regardless of mulch type. Higher bell pepper injury was observed in 2006 (≥ 36%) than in 2007 (≤ 11%) at 750 kg ha−1 of phenyl ITC. The lower injury in 2007 could be attributed to aeration of beds 48 h prior to transplanting. Regardless of mulch type, phenyl ITC at 2,071 (± 197) and 1,655 (± 309) kg ha−1 was required to control yellow nutsedge, Palmer amaranth, and large crabgrass equivalent to methyl bromide in 2006 and 2007, respectively. Bell pepper marketable yield at all rates of phenyl ITC was lower than methyl bromide in 2006. In contrast, marketable yield in phenyl ITC at 750–kg ha−1 was equivalent to methyl bromide in 2007. It is concluded that phenyl ITC should be applied at least 4.2 times higher rate than methyl bromide for effective weed control, and bed aeration is required to minimize crop injury and yield loss. Additional research is needed to test phenyl ITC in combination with other weed control strategies to obtain effective weed control with acceptable crop safety.
Nomenclature: Large crabgrass, Digitaria sanguinalis (L.) Scop. DIGSA; Palmer amaranth, Amaranthus palmeri S. Wats. AMAPA; yellow nutsedge, Cyperus esculentus L. CYPES; bell pepper, Capsicum annuum ‘Heritage'.
Methyl bromide es un fumigante común para el control efectivo de malezas en la producción de vegetales con coberturas plásticas. Sin embargo, la prohibición de este fumigante en los Estados Unidos ha creado la necesidad de encontrar una alternativa apropiada. Este estudio investigó la eficacia como herbicida de phenyl isothiocyanate (ITC) como alternativa a methyl bromide para el control de malezas en chile (pimiento) producido con cobertura de polyethylene durante 2006 y 2007. Seis dosis de phenyl ITC (0, 15, 75, 150, 750 y 1500 kg ha−1) bajo una cobertura de polyethylene de baja densidad (LDPE) o de película virtualmente impermeable (VIF) fueron evaluadas contra Cyperus esculentus, Amaranthus palmeri y Digitaria sanguinalis. Adicionalmente, un tratamiento estándar de methyl bromide-chloropicrin (67:33) a 390 kg ha−1 bajo cobertura de LDPE fue incluido con fines de comparación. La cobertura VIF no brindó ninguna ventaja sobre la cobertura LDPE para mejorar el control de malezas o el rendimiento del chile comercializable. Daños inaceptables causados al chile (≥60%) ocurrieron a la dosis más alta de phenyl ITC 1,500 kg ha−1 a 2 semanas después del tratamiento en ambos años, sin importar el tipo de cobertura. En 2006, se observaron mayores daños en el chile (≥36%) que en 2007 (≤11%) a 750 kg ha−1 de phenyl ITC
Field studies were conducted from 2009 to 2011 in Oregon and from 2006 to 2008 in California to evaluate the response of various crops to imazosulfuron soil residues 91 to 731 d after application (DAA). Imazosulfuron rates applied in Oregon were 224 or 450 g ai ha−1 PRE, sequential 224 g ha−1 PRE and POST, or 450 g ha−1 as a tank mixture with PRE applied S-metolachlor at 1,060 g ai ha−1 followed by 224 g ha−1 POST to potato. Imazosulfuron was applied on bare ground PRE at 224, 336, and 450 g ha−1 and applied sequentially at 450 g ha−1 in California. Sugar beet planted 91 to 364 and 458 to 731 DAA were injured 83 to 94% and 54 to 78% among imazosulfuron rates and application timing in 2007 and 2008, respectively. Alfalfa planted 701 DAA at rates greater than 224 g ha−1 was injured, and the forage yield was reduced. Onion, spinach, carrot, and broccoli were also injured by imazosulfuron residues when planted 91 to 731 DAA, regardless of the rate or interval before planting. Imazosulfuron applied at 224 to 450 g ha−1 458 to 731 d before planting head lettuce resulted in moderate injury that did not reduce fresh-weight yield. The results indicated that imazosulfuron residues in the soil have the potential to injure many rotational specialty crops for 2 yr or more in soils with pH > 6.9.
Nomenclature: EPTC; imazosulfuron; rimsulfuron; S-metolachlor; alfalfa, Medicago sativa L.; broccoli, Brassica oleracea L. var. botrytis L. ‘Marathon'; carrot, Daucus carota L. ‘Bolero F'; dry bulb onion, Allium cepa L. ‘Vaquero'; green onion, Allium cepa L. cv. ‘1200′; head lettuce, Lactuca sativa L. ‘Sniper'; potato, Solanum tuberosum L. ‘Ranger Russet'; spinach, Spinacia oleracea L. ‘Whale'; sugar beet, Beta vulgaris L. ‘HM91122RR' and ‘B4430R'.
Se realizaron estudios de campo de 2009 a 2011 en Oregon y de 2006 a 2008 en California para evaluar la respuesta de varios cultivos a residuos en el suelo de imazosulfuron a 91 y 731 d después de la aplicación (DAA). En Oregon, las dosis de imazosulfuron aplicadas a la papa fueron 224 ó 450 g ai ha−1 PRE, aplicaciones secuenciales de 224 g ha−1 PRE y POST, o 450 g ha−1 en mezcla en tanque con S-metolachlor a 1060 g ai ha−1 PRE seguido de 224 g ha−1 POST. En California, imazosulfuron se aplicó PRE sobre suelo desnudo a 224, 336 y 450 g ha−1 y secuencialmente a 450 g ha−1. La remolacha azucarera sembrada 91 a 364 y 458 a 731 DAA fue dañada 83 a 94% y 54 a 78% en las diferentes dosis y momentos de aplicación de imazosulfuron en 2007 y 2008, respectivamente. Alfalfa sembrada 701 DAA a dosis mayores a 224 g ha−1 sufrió daño y el rendimiento del forraje se redujo. Cebolla, espinaca, zanahoria y brócoli también sufrieron daños debido a los residuos de imazosulfuron, cuando se sembraron 91 a 731 DAA, independientemente de la dosis o intervalo de tiempo antes de la siembra. Imazosulfuron aplicado de 224 a 450 g ha−1, 458 a 731 d antes de la siembra de lechuga, resultó en daño moderado que no redujo el rendimiento de peso fresco. Los resultados indicaron que los residuos de imazosulfuron en el suelo tienen el potencial de dañar muchos cultivos rotacionales de vegetales por 2 años o más en suelos con pH >6.9.
Spreading dogbane is a troublesome weed of wild blueberry fields. Field studies were conducted in 2008 and 2009 to evaluate efficacy of different herbicides and application techniques on spreading dogbane as well as blueberry tolerance. Results indicated that summer-broadcast nicosulfuron at 25 g ai ha−1 with 0.5% v/v blend of surfactant with petroleum hydrocarbons suppressed (> 60%) spreading dogbane at three of four sites. Spot sprays with dicamba at 1 kg ae ha−1 effectively controlled (> 80%) spreading dogbane with minimal (19 to 23%) blueberry damage at three of four sites. Glyphosate spot sprays at 5 g ae L−1 water provided more effective and longer control than hand pulling. Wiping with glyphosate at 154 g ae L−1 water or wiping triclopyr at 29 g ae L−1 water onto the shoots is also an effective control method for localized patches of spreading dogbane. Although low to moderate crop damage may accompany these techniques, it may still be tolerable for growers to apply these options to limit long-term yield loss caused by spreading dogbane.
Apocynum androsaemifolium es una maleza problemática en campos de arándano silvestre. En 2008 y 2009, se realizaron estudios de campo para evaluar la eficacia de diferentes herbicidas y técnicas de aplicación sobre A. androsaemifolium y la tolerancia del arándano. Los resultados indicaron que la aplicación general durante el verano de nicosulfuron a 25 g ai ha−1 con una mezcla de surfactante con hidrocarburos de petróleo 0.5% v/v, suprimió (>60%) A. androsaemifolium en tres de los cuatro sitios experimentales. Aplicaciones localizadas de glyphosate a 5 g ae L−1 agua brindaron un control más efectivo y duradero que la deshierba manual. La aplicación con azadón químico de glyphosate a 154 g ae L−1 agua o de triclopyr a 29 g ae L−1 agua sobre tejido aéreo fueron también métodos efectivos de control cuando A. androsaemifolium tuvo una distribución localizada. Aunque un daño al cultivo de bajo a moderado puede acompañar a estas técnicas de aplicación, esto puede ser tolerable para productores que apliquen estas opciones con el objetivo de limitar pérdidas en rendimiento a largo plazo causadas por A. androsaemifolium.
Citron melon is a monoecious and hairy annual vine commonly found in citrus orchards and cotton and peanut fields. There is limited information available on citron melon control with PRE- and POST-applied herbicides in Florida citrus. Experiments were conducted to evaluate the response of citron melon to 11 PRE and 18 POST herbicides under greenhouse conditions. Indaziflam applied PRE at 0.095 kg ai ha−1 resulted in 13% citron melon emergence at 14 d after treatment (DAT). The majority of PRE herbicides did not affect emergence at 14 DAT. Efficacy of PRE herbicides at 21 DAT resulted in > 90% control of citron melon with bromacil, premix formulation of bromacil diuron, flumioxazin, indaziflam at 0.073 and 0.095, norflurazon, and simazine. Citron melon control was < 30% 21 DAT following PRE-applied diuron, oryzalin, and flazasulfuron. Control of citron melon varied by POST herbicides and growth stage. Regardless of citron melon growth stage, glyphosate, glufosinate, saflufenacil, paraquat, and flumioxazin provided > 90% at 7 and 14 DAT. Carfentrazone, flazasulfuron, imazapic, pyrithiobac-Na, rimsulfuron, trifloxysulfuron, and premix of 2,4-D glyphosate controlled citron melon at least 90% when applied to two- to four-leaf plants. Control was reduced when application was delayed to the six- to eight-leaf stage. Bentazon and halosulfuron controlled citron melon 11 to 31% regardless of growth stage. Biomass of citron melon at 14 DAT was reduced > 50% in all herbicide treatments except with bentazon and halosulfuron applied at both stages, and dicamba, mesotrione, imazapic, and rimsulfuron applied to six- to eight-leaf citron melon. The results of this study indicate that citron melon can be adequately controlled with several PRE- or POST-applied herbicides; however, research is required to evaluate PRE followed by POST programs or their tank mixtures for season-long control of citron melon under field conditions.
Nomenclature: Citron melon, Citrullus lanatus (Thunb.) Mats and Nakai var. citroides (L. H. Bailey) Mansf. CILAC; citrus, Citrus spp.; cotton, Gossypium hirsutum L.; peanut, Arachis hypogaea L.
Citrullus lanatus var. citroides es una enredadera pilosa anual monoica que se encuentra en plantaciones de cítricos y campos de algodón y maní. Hay poca información disponible sobre el control de C. lanatus con herbicidas aplicados PRE y POST en plantaciones de cítricos en Florida. Se realizaron experimentos bajo condiciones de invernadero para evaluar la respuesta de esta maleza a 11 herbicidas PRE y 18 POST. Indaziflam aplicado PRE a 0.095 kg ai ha−1 resultó en 13% de emergencia de C. lanatus 14 días después del tratamiento (DAT). La mayoría de herbicidas PRE no afectaron la emergencia14 DAT. La eficacia de los herbicidas PRE 21 DAT resultó en >90% de control de C. lanatus con bromacil, una formulación pre-mezclada de bromacil diuron, flumioxazin, indaziflam a 0.073 y 0.095, norflurazon, y simazine. El control de C. lanatus fue <30% 21 DAT después de aplicaciones PRE de diuron, oryzalin y flazasulfuron. El control de esta maleza varió dependiendo de los herbicidas POST y del estado de crecimiento. Independientemente del estado de crecimiento de C. lanatus, glyphosate, glufosinate, saflufenacil, paraquat y flumioxazin brindaron >90% a 7 y 14 DAT. Carfentrazone, flazasulfuron, imazapic, pyrithiobac-Na, rimsulfuron, trifloxysulfuron, y una pre-mezcla de 2,4-D glyphosate control
Methiozolin selectively controls annual bluegrass in cool-season turfgrasses, and practitioners may wish to reseed desirable species in treated areas. Field experiments were conducted to evaluate reseeding intervals for creeping bentgrass, perennial ryegrass, and tall fescue following methiozolin applications. Turfgrass establishment varied for species, application timing (0, 2, 4, or 6 wk before seeding, WBS), and rates tested (0.56, 1.12, or 2.24 kg ai ha−1). Reductions in turf cover suggest that seeding of creeping bentgrass, perennial ryegrass, and tall fescue should be delayed 2 wk after methiozolin treatments at 0.56 kg ha−1. However, reseeding should be delayed after methiozolin treatments at 1.12 kg ha−1 for approximately 4, 4, and 2 wk for creeping bentgrass, perennial ryegrass, and tall fescue, respectively. Similarly, establishment was reduced on all dates from the nontreated after 2.24 kg ha−1 was applied at 4 WBS, suggesting that reseeding should be delayed for at least 6 wk on all three species at the high rate.
Methiozolin controla selectivamente Poa annua en céspedes de clima frío, y los usuarios estarían interesados en resembrar especies deseables en las áreas tratadas. Se realizaron experimentos de campo para evaluar los intervalos de resiembra de Agrostis stolonifera, Lolium perenne y Festuca arundinacea después de aplicaciones de methiozolin. El establecimiento de los céspedes varió según la especie, el momento de aplicación (0, 2, 4 ó 6 semanas antes de la siembra, WBS), y las dosis evaluadas (0.56, 1.12 ó 2.24 kg ai ha−1). Las reducciones en la cobertura del césped sugieren que la resiembra de A. stolonifera, L. perenne y F. arundinacea debe ser retrasada 2 semanas después del tratamiento con 0.56 kg ha−1 de methiozolin. Sin embargo, después de tratamientos con methiozolin a 1.12 kg ha−1, la resiembra debe ser retrasada al menos 4, 4 y 2 semanas para A. stolonifera, L. perenne y F. arundinacea, respectivamente. Similarmente en comparación con el testigo no tratado, en todas las fechas de aplicación se redujo el establecimiento después de que se aplicó 2.24 kg ha−1 a 4 WBS, lo que sugiere que la resiembra debe ser retrasada al menos 6 semanas en las tres especies cuando se use esta dosis alta.
The weed management needs of organic producers are unique because they rely primarily on cultural and physical management strategies. Recommendations regarding commonly used tools for weed management could benefit this sector of agriculture. The objectives of this research were to (1) determine the optimum time of day for propane flaming to achieve maximum weed reductions while minimizing corn damage; (2) assess whether flaming, rotary hoeing, or a combination of the two tools best manages early-season weeds without injuring dry beans; and (3) evaluate the use of growing degree days (GDD) to optimize rotary hoe timing. Experiments were carried out between 2006 and 2009 in Hickory Corners and East Lansing, MI. Flaming reduced broadleaf weed densities by at least 82% when done in the morning to midafternoon but only reduced densities by 58% when weeds were flamed in the evening. Common lambsquarters, redroot pigweed, and velvetleaf were easier to control by flaming than common ragweed and common purslane. Flaming did not reduce grass weed densities. When comparing flaming and rotary hoeing, the two treatments that achieved the highest level of weed control and highest dry bean yields were flaming prior to bean emergence followed by two rotary hoeings and rotary hoeing three times (no flaming). However, the added cost of the flamer may only be justified when wet conditions make rotary hoeing ineffective. Flaming dry beans POST resulted in significant injury and yield reductions of 60%; therefore this practice is not recommended. Timing rotary hoe passes every 300 GDD (base 3.3 C) from the time of soybean or dry bean planting resulted in fewer passes compared with the 7-d or 150 GDD treatments, while maintaining similar levels of weed control and yields similar to the weed-free treatment in 1 of 2 yr for each crop.
Nomenclature: Common lambsquarters, Chenopodium album L. CHEAL; common purslane, Portulaca oleracea L. POROL; common ragweed, Ambrosia artemisiifolia L. AMBEL; redroot pigweed, Amaranthus retroflexus L. AMARE; velvetleaf, Abutilon theophrasti Medik. ABUTH; corn, Zea mays L.; dry bean, Phaseolus vulgaris L.; soybean, Glycine max (L.) Merr.
Las necesidades de manejo de malezas de los productores orgánicos son únicas porque ellos dependen primordialmente de estrategias culturales y físicas. Las recomendaciones que consideren herramientas comúnmente utilizadas para el manejo de malezas podrían beneficiar a este sector de la agricultura. Los objetivos de esta investigación fueron: (1) determinar el momento óptimo del día para quemar con llamas de propano y alcanzar reducciones máximas en las poblaciones de malezas al tiempo que se minimiza el daño al maíz; (2) evaluar si las llamas, el cultivador rotativo, o la combinación de estas dos herramientas brinda el mejor manejo de malezas en la etapa temprana del cultivo sin dañar al frijol común; y (3) evaluar el uso de grados días de crecimiento (GDD) para optimizar el momento de uso del cultivador rotativo. Entre 2006 y 2009, se realizaron experimentos en Hickory Corners y East Lansing, MI. La quema con llamas realizada entre la mañana y media tarde redujo las densidades de malezas de hoja ancha en al menos 82%, pero solamente redujo las densidad en 58% cuando las malezas fueron quemadas en la noche. El control con llamas de Chenopodium album, Amaranthus retroflexus y Abutilon theophrasti fue más sencillo que el control de Ambrosia artemisiifolia y Portulaca oleracea. La quema con llamas no redujo las densidades de malezas gramíneas. Al comparar la quema con
Thermal heat has been utilized for nonselective weed control methods. These methods are highly variable in application and efficacy. One effective weed–seed-control determining factor is achieving the thermal death point of targeted weed seeds. The thermal death point varies by weed species, temperature, and exposure time. Our objective was to determine the thermal death point of large crabgrass, cock's-comb kyllinga, and Virginia buttonweed at short thermal exposure periods. Studies conducted utilized 5 and 20 s exposure periods for incremental range, 60 to 250 C temperatures. Sigmoid regression curves were used to predict weed seed mortality by temperature and exposure time. A significant interaction between exposure period and temperature occurred for each weed species. Weed species increased in susceptibility to 20 s thermal heat as follows: Virginia buttonweed < cock's-comb kyllinga < large crabgrass. Increasing thermal exposure time from 5 to 20 s reduced thermal temperature by 21 C to achieve 50% mortality for large crabgrass and by 10 C for cock's-comb kyllinga. Virginia buttonweed achieved 50% mortality at 99 C for 5 and 20 s exposure periods. These data indicate that at least 50% weed seed mortality can be achieved at 99 and 103 C for 20 and 5 s exposure periods, respectively, for these weed species.
Nomenclature: Large crabgrass, Digitaria sanguinalis (L.) Scop DIGSA; Virginia buttonweed, Diodia virginiana L. DIQVI; cock's-comb kyllinga, Kyllinga squamulata Thonn. ex Vahl, KYSQ.
El calor termal ha sido utilizado en métodos de control no-selectivo de malezas. Estos métodos son altamente variables en aplicación y eficacia. Un factor determinante del control de semillas de malezas es el poder alcanzar el punto de muerte termal de las semillas de las malezas objetivo. El punto de muerte termal varía según la especie de malezas, la temperatura y el tiempo de exposición. Nuestro objetivo fue determinar el punto de muerte termal de Digitaria sanguinalis, Kyllinga squamulata y Diodia virginiana bajo períodos cortos de exposición termal. Los estudios realizados utilizaron períodos de exposición de 5 y 20 s en un rango incremental de temperatura de 60 a 250 C. Curvas de regresión sigmoide fueron usadas para predecir la mortalidad de las semillas de las malezas según la temperatura y el tiempo de exposición. Una interacción significativa ocurrió entre el tiempo de exposición y la temperatura para cada especie. Las especies de malezas incrementaron en susceptibilidad a 20 s de calor termal como se describe a continuación: D. virginiana < K. squamulata < D. sanguinalis. Al incrementarse la exposición termal de 5 a 20 s se redujo la temperatura termal en 21 C para alcanzar 50% de mortalidad de D. sanguinalis y en 10 C para K. squamulata. D. virginiana alcanzó 50% de mortalidad a 99 C en períodos de exposición de 5 y 20 s. Estos datos indican que al menos 50% de la mortalidad de las semillas de malezas puede ser alcanzada a 99 y 103 C para períodos de exposición de 20 y 5 s, respectivamente, para estas especies de malezas.
Experiments were conducted in 2008 and 2009 in Fayetteville, AR, to determine the influence of late-season herbicide applications on control, seed reduction, seed viability, and seedling fitness of two glyphosate-resistant (GR) Palmer amaranth biotypes, one from Mississippi County (MC) and the other from Lincoln County (LC) in Arkansas. Glyphosate (870 g ae ha−1), glufosinate (820 g ai ha−1), 2,4-D amine (1,060 g ae ha−1), dicamba (280 g ae ha−1), and pyrithiobac (70 g ai ha−1) were each applied at the first visible sign of inflorescence of GR Palmer amaranth plants. Glufosinate, 2,4-D, and dicamba provided 52 to 74% control of MC GR Palmer amaranth plants 28 d after treatment (DAT). The LC biotype was larger (94 cm tall) than the MC biotype was (64 cm tall) at application and was more difficult to control. Although control of GR Palmer amaranth was inadequate, late-season applications of glufosinate, 2,4-D, and dicamba reduced seed production of the LC biotype by 75 to 87% and production of the MC biotype by 94 to 95% compared with nontreated plants. Irrespective of biotypes, glufosinate, 2,4-D, and glyphosate reduced 100-seed weight by 22% compared with the nontreated control, and viability of seeds produced by treated plants was only 45 to 61% compared with 97% seed viability in nontreated plants. Glyphosate, glufosinate, 2,4-D, or dicamba reduced cumulative seedling emergence by an average of 84% compared with the nontreated check. Seedling biomass was four times greater for the LC than for the MC biotype, suggesting greater vigor and fitness for the LC progeny. This research demonstrates that a single, late-season (early inflorescence stage) application of glufosinate, 2,4-D, or dicamba could potentially reduce seedbank replenishment of GR Palmer amaranth. Additionally, reduction in seed weight, viability, and seedling recruitment would impair the success of GR Palmer amaranth progeny in the following season.
Se realizaron experimentos en 2008 y 2009 en Fayetteville, AR, para determinar la influencia de aplicaciones de herbicidas tarde en la temporada de producción sobre el control, la reducción en la producción de semilla, la viabilidad de la semilla y el desempeño de las plántulas de dos biotipos de Amaranthus palmeri resistentes a glyphosate (GR), uno del condado de Mississippi (MC) y el otro del condado Lincoln (LC) en Arkansas. Glyphosate (870 g ae ha−1), glufosinate (820 g ai ha−1), 2,4-D amine (1,060 g ae ha−1), dicamba (280 g ae ha−1) y pyrithiobac (70 g ai ha−1), fueron aplicados al primer signo visible de las inflorescencias de las plantas de A. palmeri GR. Glufosinate, 2,4-D y dicamba brindaron un control de 52 a 74% de las plantas MC de A. palmeri GR 28 días después del tratamiento (DAT). El biotipo LC fue más grande (94 cm de altura) que el biotipo MC (64 cm de altura) al momento de la aplicación y fue más difícil de controlar. Aunque el control de A. palmeri GR fue inadecuado, las aplicaciones tardías en la temporada con glufosinate, 2,4-D y dicamba redujeron la producción de semillas del biotipo LC de 75 a 87% y 94 a 95% del biotipo MC en comparación con las plantas no-tratadas. Independientemente del biotipo, glufosinate, 2,4-D y glyphosate redujeron el peso 100-semillas en 22% comparados con el testigo no-tratado, y la viabilidad de las semillas producidas por las plantas tratadas fue solamente 45 al 61% comparadas con 97% de viabilidad de las plantas no-tratadas. Glyphosate, glufosinate, 2,4-D o dicamba
Purple and yellow nutsedges are two of the world's worst weeds, reproducing asexually by rhizomes that can develop into new shoots or tubers. These tubers are the storage organs for carbohydrate reserves that are replenished by growing shoots and exhausted by new shoot, root plus rhizome, and basal bulb production. Based on the biology of both species, we hypothesized that the regenerative potential of purple and yellow nutsedge would decrease, with increasing shoot clipping–soil disturbance (SCSD) frequency and decreasing tuber size. To test this hypothesis, greenhouse experiments were conducted in pots to determine the effect of SCSD frequency and tuber size on aboveground and belowground growth of purple and yellow nutsedges. Five viable tubers of two tuber category sizes (small, 0.40 ± 0.05; and large, 0.80 ± 0.05 g of tuber fresh weight ) were subjected to four SCSD frequencies (weekly, biweekly, monthly, and none) for 12 wk. SCSD was performed by clipping the emerged nutsedge shoots followed by manually disturbing the soil. SCSD at biweekly or weekly intervals reduced purple nutsedge proliferation, regardless of initial tuber size. However, monthly SCSD did not suppress purple nutsedge as effectively as weekly or biweekly SCSD, and less proliferation occurred with small tubers than with large tubers. In contrast, yellow nutsedge proliferation was equally reduced with monthly or more-frequent SCSD, regardless of initial tuber size. Even weekly soil disturbance for 12 wk failed to eradicate all small or large tubers in either species. Thus, yellow nutsedge is managed more easily than purple nutsedge with less-frequent tillage or cultivation. However, tillage or cultivation alone during a 12-wk period will not likely eradicate either nutsedge species from infested soil.
Nomenclature: Purple nutsedge, Cyperus rotundus L. CYPRO; yellow nutsedge, Cyperus esculentus L. CYPES.
Cyperus rotundus y Cyperus esculentus son dos de las peores malezas del mundo, las cuales se reproducen asexualmente por rizomas que pueden desarrollar nuevo tejido aéreo o tubérculos. Estos tubérculos son órganos de almacenaje de reservas de carbohidratos, los cuales son mantenidos por la parte aérea en crecimiento de la planta y son desgastados por la producción de nuevos puntos aéreos, raíces más rizomas y bulbos basales. Basados en la biología de ambas especies, nosotros planteamos la hipótesis de que el potencial regenerativo de C. rotundus y C. esculentus disminuiría, al incrementarse la frecuencia de poda del tejido aéreo y la perturbación del suelo (SCSD) y al disminuirse el tamaño de los tubérculos. Para evaluar esta hipótesis, se realizaron experimentos de invernadero en macetas para determinar el efecto de la frecuencia de SCSD y el tamaño del tubérculo sobre el crecimiento del tejido aéreo y subterráneo de C. rotundus y C. esculentus. Se sometió cinco tubérculos viables de dos categorías de tubérculo según el tamaño (pequeño, 0.40±0.05; y grandes, 0.80±0.05 g tubérculo fresco wt−1) a cuatro frecuencias de SCSD (semanal, bisemanal, mensual y ninguna) durante 12 semanas. SCSD se realizó cortando las hojas de plantas emergidas de C. rotundus y C. esculentus e inmediatamente después perturbando el suelo manualmente. SCSD realizado a intervalos semanales o bisemanales redujo la proliferación de C. rotundus sin importar el tamaño del tubérculo. Sin embargo, SCSD mensual no fue tan efectivo como SCSD semanal o
Winter annual weeds can interfere directly with crops and serve as alternative hosts for important pests, particularly in reduced tillage systems. Field experiments were conducted on loamy sand soils at two sites in Holt, MI, between 2008 and 2011 to evaluate the relative effects of cereal rye, hairy vetch, and rye–vetch mixture cover crops on the biomass and density of winter annual weed communities. All cover crop treatments significantly reduced total weed biomass compared with a no-cover-crop control, with suppression ranging from 71 to 91% for vetch to 95 to 98% for rye. In all trials, the density of nonmustard family broadleaf weeds was either not suppressed or suppressed equally by all cover crop treatments. In contrast, the density of mustard family weed species was suppressed more by rye and rye–vetch mixtures than by vetch. Cover crops were more consistently suppressive of weed dry weight per plant than of weed density, with rye-containing cover crops generally more suppressive than vetch. Overall, rye was most effective at suppressing winter annual weeds; however, rye–vetch mixtures can match the level of control achieved by rye, in addition to providing a potential source of fixed nitrogen for subsequent cash crops.
Las malezas anuales de invierno pueden interferir directamente con los cultivos y pueden servir como hospederos alternativos para plagas importantes, particularmente en sistemas con labranza reducida. Se realizaron experimentos de campo en suelos areno limosos en dos sitios en Holt, Michigan entre 2008 y 2011 para evaluar los efectos relativos de los cultivos de cobertura Secale cereale , Vicia villosa y la mezcla S. cereale-V. villosa sobre la biomasa y la densidad de las comunidades de malezas anuales de invierno. Todos los tratamientos de cultivos de cobertura redujeron significativamente la biomasa total de malezas en comparación con el testigo sin cultivo de cobertura, con una supresión que varió de 71 a 91% en el caso de V. villosa y de 95 a 98% en el caso de S. cereale. En todos los experimentos, la densidad de malezas de hoja ancha que no pertenecen a la familia de la mostaza (Brassicaceae) no fue suprimida o fue suprimida de la misma forma por todos los tratamientos de cobertura. En contraste, la densidad de la familia de la mostaza fue suprimida más por los tratamientos con S. cereale que el tratamiento de V. villosa. Los cultivos de cobertura fueron más consistentemente supresores del peso seco por individuo de malezas que de la densidad de malezas, y las coberturas que contenían S. cereale fueron más supresoras que la cobertura de V. villosa.
Evaluation of turfgrass performance at low nitrogen fertility levels is important because many home lawns are fertilized below common recommendations. The objective of this study was to evaluate visible quality and weed susceptibility of common and alternative cool season grasses under multiple management regimes in Wisconsin. A split-split plot completely randomized block design was used to evaluate ‘Kingfisher' Kentucky bluegrass (Kentucky bluegrass), ‘Kenblue' Kentucky bluegrass, ‘Victory II' chewings fescue, ‘Grande II' tall fescue, and ‘Jiffe II' perennial ryegrass. Each species was mowed at 3.5, 6.0, or 8.5 cm, and fertilized with 0, 98, or 196 kg ha−1 yr−1 of nitrogen. Visible quality and weed cover were evaluated four times annually for 3 yr. Tall fescue had the greatest turf quality across all treatments. Kingfisher Kentucky bluegrass, an improved variety, responded most dramatically to nitrogen fertilization, with quality rating improved from 5.1 to 7.1 when annual nitrogen applications totaled 196 kg ha−1 compared to the nonfertilized control. Kenblue Kentucky bluegrass, a common variety, had the greatest weed cover at all mowing heights and fertilizer rates. Assessment of common dandelion flowers by digital image analysis revealed that improved and common Kentucky bluegrass had greater common dandelion cover than fine or tall fescue when herbicides were withheld for 2.5 yr. Background soil fertility was found to have a significant impact on visible quality and weed cover. In an area with eroded, low-fertility soil, improved Kentucky bluegrass required 196 kg N ha−1 yr−1 to maintain high quality and limit weed invasion. These results suggest that tall fescue is best suited to low and high input conditions, while improved varieties of Kentucky bluegrass performed acceptably only under high inputs.
Nomenclature: Chewings fescue, Festuca rubra var. commutata Gaud FESRU; common dandelion, Taraxacum officinale G.H. Weber ex Wiggers TAROF; Kentucky bluegrass, Poa pratensis L. POAPR; perennial ryegrass, Lolium perenne L. LOLPE; tall fescue, Lolium arundinaceum (Schreb.) S.J. Darbyshire FESAR.
La evaluación del desempeño del césped a niveles de fertilidad bajos en nitrógeno es importante porque los céspedes caseros son fertilizados por debajo de las recomendaciones comunes. El objetivo de este estudio fue evaluar la calidad visual y la susceptibilidad a las malezas de zacates de clima frío comunes y alternativos bajo múltiples regímenes de manejo en Wisconsin. Se usó un diseño de bloques completos al azar en parcelas subdivididas para evaluar Poa pratensis 'Kingfisher' y 'Kenblue', Festuca rubra var. commutata 'Victory II', Lolium arundinaceum 'Grande II' y Lolium perenne 'Jiffe II'. Cada especie fue podada a 3.55, 6.0 ó 8.5 cm, y fertilizada con 0.98 ó 196 kg ha−1 año−1 de nitrógeno. La calidad visual y la cobertura de malezas fueron evaluadas cuatro veces anualmente durante 3 años. L. arundinaceum tuvo la mayor calidad en todos los tratamientos. Kingfisher, una variedad mejorada, respondió más dramáticamente a la fertilización nitrogenada, con una mejora en la evaluación visual al compararse con el testigo sin fertilización de 5.1 a 7.1 cuando las aplicaciones anuales de nitrógeno totalizaron 196 kg ha−1. Kenblue, una variedad común, tuvo la mayor cobertura de malezas en todas las alturas de poda y dosis de fertilización. Evaluaciones de l
Glyphosate-resistant Palmer amaranth has become a major problem for cotton producers throughout much of the southern United States. With cotton producers relying heavily on glyphosate-resistant cotton, an alternative solution to controlling resistant Palmer amaranth is needed. A field experiment was conducted during 2009 and 2010 at Marianna, AR, in which a rye cover crop and no cover crop were tested in combination with deep tillage with the use of a moldboard plow and no tillage to determine the impact on Palmer amaranth emergence in cotton. To establish a baseline population, 500,000 glyphosate-resistant Palmer amaranth seeds were placed in a 2-m2 area in the middle of each plot and incorporated into the soil, and emergence was evaluated five times during the season. In 2009, both tillage and the cover crop reduced Palmer amaranth emergence in cotton, but the combination of the two reduced emergence 85%. In the second year, only the cover crop reduced Palmer amaranth emergence in cotton, a 68% reduction. Cover crops and deep tillage will not eliminate glyphosate-resistant Palmer amaranth; however, use of these tools will likely reduce the risks of failures associated with residual herbicides along with selection pressure placed on both PRE- and POST-applied herbicides. Additional efforts should focus on the integration of the best cultural practices identified in this research with use of residual herbicides and greater focus on limiting Palmer amaranth seed production and reducing the soil seedbank.
Nomenclature: Glyphosate; Palmer amaranth, Amaranthus palmeri S. Wats.; cotton, Gossypium hirsutum L. ‘Stoneville 4554 B2RF'; rye, Secale cereale L. ‘Wrens Abruzzi'.
El Amaranthus palmeri resistente a glyphosate se ha convertido en un gran problema para los productores de algodón a lo largo del sur de los Estados Unidos. Al depender los productores de algodón, fuertemente de algodón resistente a glyphosate, se necesita una solución alternativa para controlar A. palmeri resistente. Se realizó un experimento de campo durante 2009 y 2010 en Marianna, AR, en el cual se evaluó el centeno como cultivo de cobertura y la ausencia de cultivo de cobertura en combinación con labranza profunda con el uso de arado de vertedera y cero labranza, para determinar el impacto en la emergencia de A. palmeri en el algodón. Para establecer una población base se pusieron 500 000 semillas de A. palmeri resistente a glyphosate en un área de 2 m−2 en el centro de cada parcela y se incorporaron al suelo, y la emergencia fue evaluada cinco veces durante la temporada de crecimiento. En 2009, ambos sistemas de labranza y el cultivo de cobertura redujeron la emergencia de A. palmeri en algodón, pero la combinación de ambos redujo la emergencia en 85%. En el segundo año, solamente el cultivo de cobertura redujo la emergencia de A. palmeri en el algodón, con una reducción de 68%. Los cultivos de cobertura y la labranza profunda no eliminarán A. palmeri resistente a glyphosate. Sin embargo, el uso de estas herramientas probablemente reducirá el riesgo asociado a fallas en el control con herbicidas residuales, además de la presión de selección asociada a herbicidas PRE y POST. Esfuerzos adicionales deberían enfocarse en la integración de las mejores prácticas culturales identificadas en esta investigación con el uso de herbicidas residuales y un mayor énfasis en limitar la producción de semilla de A. palmeri y así red
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere