BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
A field study was conducted in 2015 and 2016 near Crowley, LA, to evaluate antagonistic, synergistic, or neutral interactions of quizalofop when mixed with contact herbicides labeled for use in rice production. Quizalofop was applied at 120 g ai ha-1. Mixture herbicides included bentazon at 1,050 g ai ha-1, carfentrazone at 18 g ai ha-1, propanil at 3,360 g ai ha-1, saflufenacil at 25 g ai ha-1, and thiobencarb at 3,360 g ai ha-1. A second application of quizalofop at 120 g ha-1 was made at 28 d after the initial application (DAIT) to evaluate control of weeds escaping the initial treatment. At 14 and 28 DAIT, red rice, ‘CLXL-745’, and ‘CL-111’ treated with quizalofop plus propanil indicated an antagonistic response with an observed control of 69% to 71% compared with an expected control of 92% to 94%. Barnyardgrass treated with the same mixture also indicated an antagonistic response at 14 and 28 DAIT with an observed control of 16% compared with an expected control of 94%. Barnyardgrass treated with quizalofop plus saflufenacil indicated an antagonistic response at 14 DAIT; however, the same mixture produced a neutral response by 28 DAIT. In addition, a second application of quizalofop was not able to overcome the antagonism observed with a quizalofop plus propanil mixture at 14 and 28 DAIT for red rice, CLXL-745, CL-111, or barnyardgrass control. Quizalofop mixed with carfentrazone or thiobencarb produced a neutral response for all weeds evaluated at each evaluation date.
Acetochlor (WSSA Group 15) is a very-long-chain fatty acid–inhibiting herbicide used to control grass weed species in row crops and could potentially be effective when used in a rice herbicide program. A field study was conducted in 2016 and 2017 at four locations to determine the effects of acetochlor formulation and rate on rice tolerance. Overall, rice was more tolerant to the microencapsulated (ME) formulation of acetochlor than to the emulsifiable concentrate (EC) formulation, likely because of the potential for immediate absorption of acetochlor from the EC formulation following rainfall. Differences in rainfall among experimental sites and years caused variation in acetochlor activation and influenced crop injury. In all environments, PRE applications of either formulation resulted in the greatest injury at 2 WAT (61%), while injury following delayed PRE (DPRE) or early POST (EPOST) applications averaged 30% and 16%, respectively. When ME acetochlor was applied EPOST, rough rice yield was 97% of nontreated rice or 9,020 kg ha -1, indicating that applications should be delayed until this stage to minimize crop damage and maximize yield.
A glasshouse study was conducted on the Louisiana State University campus in Baton Rouge, LA, to evaluate the control of brook crowngrass, rice cutgrass, southern watergrass, and water paspalum. Florpyrauxifen-benzyl was applied at 30 g ai ha-1 to each grass species at the 3- to 4-leaf or 1- to 2-stolon stage of growth. Brook crowngrass treated with florpyrauxifen was controlled 71% at 21 d after treatment. Southern watergrass and water paspalum control did not exceed 56% and 36%, respectively, across all evaluations. Rice cutgrass treated with florpyrauxifen did not reach 15% control. Plants treated with florpyrauxifen, except rice cutgrass, displayed reduction in leaf number, stolon number, plant height, and plant fresh weight. These results indicate florpyrauxifen-benzyl can help manage a brook crowngrass infestation and suppress southern watergrass. However, florpyrauxifen-benzyl has little to no activity on water paspalum and rice cutgrass, and other management options should be employed if these weeds are present.
The increased use of insecticide seed treatments in rice has raised many questions about the potential benefits of these products. In 2014 and 2015, a field experiment was conducted near Stuttgart and Lonoke, AR, to evaluate whether an insecticide seed treatment could possibly lessen injury from acetolactate synthase (ALS)–inhibiting herbicides in imidazolinone-resistant (IR) rice. Two IR cultivars were tested (a hybrid, ‘CLXL745’, and an inbred, ‘CL152’), with and without an insecticide seed treatment (thiamethoxam). Four different herbicide combinations were evaluated: a nontreated control, two applications of bispyribac-sodium (hereafter bispyribac), two applications of imazethapyr, and two applications of imazethapyr plus bispyribac. The first herbicide application was to two- to three-leaf rice, and the second immediately prior to flooding (one- to two-tiller). At both 2 and 4 wk after final treatment (WAFT), the sequential applications of imazethapyr or bispyribac plus imazethapyr were more injurious to CLXL745 than CL152. This increased injury led to decreased groundcover 3 WAFT. Rice treated with thiamethoxam was less injured than nontreated rice and had improved groundcover and greater canopy heights. Even with up to 32% injury, the rice plants recovered by the end of the growing season, and yields within a cultivar were similar with and without a thiamethoxam seed treatment across all herbicide treatments. Based on these results, thiamethoxam can partially protect rice from injury caused by ALS-inhibiting herbicides as well as increase groundcover and canopy height; that is, the injury to rice never negatively affected yield.
Nomenclature: Bispyribac-sodium; imazethapyr; thiamethoxam; rice, Oryza sativa L
Benzobicyclon is a new pro-herbicide being evaluated in the Midsouth United States as a post-flood weed control option in rice. Applications of benzobicyclon to flooded rice are necessary for efficacious herbicide activity, but why this is so remains unknown. Two greenhouse experiments were conducted to explore how herbicide placement (foliage only, flood water only, foliage and flood water simultaneously) and adjuvants (nonionic surfactant, crop oil concentrate, and methylated seed oil [MSO]) affect herbicide activity. The first experiment focused on importance of herbicide placement. Little to no herbicidal activity (<18% visual control) was observed on two- to four-leaf barnyardgrass, Amazon sprangletop, and benzobicyclon-susceptible weedy rice with benzobicyclon treatments applied to weed foliage only. In contrast, applications made only to the flood water accounted for >82% of the weed control and biomass reduction achieved when benzobicyclon was applied to flood water and foliage simultaneously. The second experiment concentrated on adjuvant type and benzobicyclon efficacy when applied to foliage and flood water simultaneously. At 28 days after treatment, benzobicyclon alone at 371 g ai ha-1 provided 29% and 67% control of three- to five-leaf barnyardgrass and Amazon sprangletop, respectively. The inclusion of any adjuvant significantly increased control, with MSO providing near-complete control of barnyardgrass and Amazon sprangletop. Furthermore, we used the physiochemical properties of benzobicyclon and benzobicyclon hydrolysate to derive theories to explain the complex activity of benzobicyclon observed in our study and in field trials. Benzobicyclon applications should contain an oil-based adjuvant and must be applied to flooded rice fields for optimal activity.
Understanding control of glyphosate-resistant (GR) Palmer amaranth with multiple herbicide sites of action, including synthetic auxins, is crucial for growers to minimize GR Palmer amaranth interference with crops. Field studies in 2013 and 2014 and a greenhouse study in 2014 were conducted in Stoneville, MS, to evaluate POST control of GR Palmer amaranth with 2,4-D alone and in mixtures with glyphosate and/or glufosinate. In the greenhouse study, control of 5- and 10-cm GR Palmer amaranth was 87% with 2,4-D at 0.84 kg ae ha –1. Dry weight reduction of GR Palmer amaranth was ≥81% with 2,4-D at 0.84 kg ha –1. In field studies, mixtures of glufosinate at 0.59 kg ai ha –1 and 2,4-D at 0.56 or 1.12 kg ae ha –1 controlled 5- to 10-cm GR Palmer amaranth 87% at 28 d after treatment (DAT). Averaged across glyphosate treatments, glufosinate applied alone applied to 5- to 10-cm GR Palmer amaranth reduced dry weight at 28 DAT to 20 g m – 2 from 82 g m – 2 and was comparable with that following 2,4-D applied alone at 1.12 kg ae ha –1 and mixtures of glufosinate plus 2,4-D at 0.56 and 1.12 kg ae ha –1. Mixtures of 2,4-D plus glufosinate provided ≥92% control of 15- to 20-cm GR Palmer amaranth at 28 DAT. When applied to 15- to 20-cm plants, mixtures of 2,4-D plus glufosinate reduced GR Palmer amaranth density to ≤5 plants m – 2 compared with 65 plants m – 2Â where no 2,4-D or glufosinate was applied. Glufosinate and 2,4-D are viable control options for 5- to 10-cm or 15- to 20-cm GR Palmer amaranth. However, 2,4-D did not improve GR Palmer amaranth control when added to any herbicide mixture except glyphosate and glufosinate applied to 15- to 20-cm plants at the 28 DAT evaluation.
Field and greenhouse studies were conducted to evaluate the antagonism potential of glufosinate applied sequentially or mixed with graminicides on barnyardgrass control. Applications of glufosinate alone provided variable control throughout the growing season in both field and greenhouse experiments. In the field, barnyardgrass control was not adversely affected by glufosinate- and clethodim-mix applications or sequential applications of glufosinate before or after clethodim. Soybean yield was not affected by application timing or clethodim rate, with yield ranging from 1,748 to 2,733 kg ha-1. In the greenhouse, glufosinate applied 1 and 3 d before graminicides generally reduced barnyardgrass control compared with the graminicides applied alone. The response with quizalofop-P was not as dramatic as with the other graminicides. Although significant visual barnyardgrass control differences were detected due to application timing of glufosinate, barnyardgrass biomass with fluazifop-P and quizalofop-P did not differ between the application timings of glufosinate. However, glufosinate applied 1 and 3 d before clethodim had significantly greater biomass compared with glufosinate applied 1 and 3 d after clethodim. The differences in environmental conditions and growth stages at the time of application may have contributed to barnyardgrass control response differences between the field and greenhouse experiments. Although barnyardgrass control in the field was not affected by glufosinate application timing, data from the greenhouse indicate potential exists for reduced control if glufosinate is applied 1 or 3 d before graminicides.
Nomenclature: Clethodim; fluazifop-P; glufosinate; quizalofop-P; barnyardgrass, Echinochloa crus-galli (L.) P. Beauv. ECHCG.; soybean, Glycine max (L.) Merr.
Blessed milkthistle is considered to be a noxious weed in irrigated and rainfed areas of Pakistan due to its strong allelopathic effects on food crops. For sustainable wheat production, it is necessary to know the critical time for weed removal (CTWR) for blessed milkthistle to allow wheat growers to get maximum benefit from control of this weed. A field study was conducted in 2014 and 2015 at the College of Agriculture, University of Sargodha, Pakistan, to investigate the CTWR of blessed milkthistle in wheat. The field experiments were designed with seven treatments; weed free (control); 2, 3, 4, 5, and 6 wk after emergence (WAE); and weedy check. At 6 WAE, a significant reduction was noted in plant height (8% and 17%), number of productive tillers per square meter (16% and 16%), spike length (23% and 54%), grains per spike (13% and 34%), 1,000-grain weight (14% and 37%), grain yield (20% and 21%), and biological yield (24% and 50%) compared with control (weed-free plots) during 2014 and 2015, respectively. The logistic model supports the field study results and suggests that blessed milkthistle's CTWR for wheat is 1 to 5 WAE based on acceptable yield losses of 5% to 15% during both years. The experimental results and logistic model indicate that blessed milkthistle should be controlled within 1 to 5 WAE to get better wheat crop harvests without compromising farmers' profits. To our knowledge, this is the first study ever in Pakistan regarding the CTWR in terms of WAE of blessed milkthistle and could help other scientists create weed control strategies for other areas of the country.
Although dicamba-resistant crops can provide an effective weed management option, risk of dicamba off-site movement to sensitive crops is a concern. Previous research with indeterminate soybean identified 14 injury criteria associated with dicamba applied at V3/V4 or R1/R2 at 0.6 to 280 g ae ha–1. Injury criteria rated on a 0 to 5 scale (none to severe), along with percent visible injury and plant height reduction, and canopy height collected 7 and 15 d after treatment (DAT) were analyzed using multiple regression with a forward-selection procedure to develop yield prediction models. Variables included in the 15 DAT models (in order of selection) for V3/V4 were lower stem base lesions/cracking, plant height reduction, terminal leaf epinasty, leaf petiole droop, leaf petiole base swelling, and stem epinasty, whereas for R1/R2 variables were lower stem base lesions/cracking, terminal leaf chlorosis, leaf petiole base swelling, stem epinasty, terminal leaf necrosis, and terminal leaf cupping. To validate the models, experiments including the same dicamba rates and application timings used in previous research were conducted at two locations. For the variables specific to each model, data collected for the dicamba rates were used to predict yield. For the V3/V4 15 DAT model, predicted yield reduction (compared with the nontreated control for dicamba at 0.6 to 4.4 g ha–1) underestimated or overestimated observed yield reduction by an average of 1 and 3 percentage points. For 8.8 g ha–1, predicted yield reduction overestimated observed yield reduction by 8 points and for 17.5 g ha–1 by 20 points. For the R1/R2 15 DAT model, predicted yield reduction for 0.6 to 4.4 g ha–1 overestimated observed yield reduction by an average of 3 to 5 percentage points. For dicamba at 8.8 g ha–1, predicted yield reduction underestimated observed yield reduction by 8 points and for 17.5 g ha–1 overestimated by 6 points.
Nomenclature: Dicamba; soybean, Glycine max (L.) Merr
Integrating multiple weed management (cultural, physical, chemical) strategies is often recommended to combat herbicide resistance. With the increased use of interseeded cover crops, the effects of PRE herbicides on their establishment and growth require study. An investigation was conducted in Lexington, KY, in 2016 through 2018 to assess the extent to which commonly used PRE corn herbicide combinations influenced interseeded red clover and annual ryegrass establishment and growth. Annual ryegrass density was reduced 29% at 3 wk after interseeding by the combination of residual dimethenamid-P and atrazine; however, biomass the following spring was not affected by herbicide combinations. Neither density of interseeded red clover at 2 to 3 wk after interseeding nor biomass prior to termination the following spring were influenced by herbicide combinations. However, red clover density was affected by herbicide treatment 5 wk after interseeding in 2016. These results could have been influenced by low summer survival, particularly in 2016. The environmental factors may have influenced the survival of the interseeded cover crops more than the PRE herbicides. This study suggests that multiple PRE herbicides can be used with minimal risk to interseeded red clover or annual ryegrass. However, the influence of the environment on establishment and survival of interseeded cover crops following the use of PRE herbicides requires further study.
Nomenclature: Atrazine; dimethenamid-P; annual ryegrass, Lolium perenne L. spp. multiflorum (Lam.) Husnot LOLMU; corn, Zea mays L.; red clover, Trifolium pretense L. TRFPR
Horseweed is a problematic weed to control, especially in no-tillage production. Increasing cases of herbicide resistance have exacerbated the problem, necessitating alternative control options and an integrated weed management approach. Field experiments were conducted to evaluate horseweed suppression from fall-planted cover crop monocultures and mixtures as well as two fall-applied residual herbicide treatments. Prior to cover crop termination, horseweed density was reduced by 88% to 96% from cover crops. At cover crop termination in late spring, cereal rye biomass was 7,671 kg ha-1, which was similar to cereal rye–containing mixtures (7,720 kg ha-1) but greater than legumes in monoculture (3,335 kg ha-1). After cover crops were terminated in late spring using a roller crimper, corn and soybeans were planted and horseweed was evaluated using density counts, visible ratings, and biomass collection until harvest. Forage radish winterkilled, offering no competition in late winter or biomass to contribute to horseweed suppression after termination. Excluding forage radish in monoculture, no difference in horseweed suppression was detected between cereal rye–containing cover crops and legumes (crimson clover and hairy vetch) in monoculture. Likewise, horseweed suppression was similar between monocultures and mixtures, with the exception of one site-year in which mixtures provided better suppression. In this experiment, the cover crop treatments performed as well as or better than the fall-applied residual herbicides, flumioxazin + paraquat and metribuzin + chlorimuron-ethyl. These results indicate that fall-planted cover crops are a viable option to suppress horseweed and can be an effective part of an integrated weed management program. Furthermore, cover crop mixtures can be used to gain the benefits of legume or brassica cover crop species without sacrificing horseweed suppression.
Derek M. Whalen, Mandy D. Bish, Bryan G. Young, Aaron G. Hager, Shawn P. Conley, Daniel B. Reynolds, Lawrence E. Steckel, Jason K. Norsworthy, Kevin W. Bradley
In recent years, the use of cover crops has increased in U.S. crop production systems. An important aspect of successful cover crop establishment is the preceding crop and herbicide program, because some herbicides have the potential to persist in the soil for several months. Few studies have been conducted to evaluate the sensitivity of cover crops to common residual herbicides used in soybean production. The same field experiment was conducted in 2016 in Arkansas, Illinois, Indiana, Missouri, Tennessee, and Wisconsin, and repeated in Arkansas, Illinois, Indiana, Mississippi, and Missouri in 2017 to evaluate the potential of residual soybean herbicides to carryover and reduce cover crop establishment. Herbicides applied during the soybean growing season included acetochlor; acetochlor plus fomesafen; chlorimuron plus thifensulfuron; fomesafen; fomesafen plus S-metolachlor followed by acetochlor; imazethapyr; pyroxasulfone; S-metolachlor; S-metolachlor plus fomesafen; sulfentrazone plus S-metolachlor; sulfentrazone plus S-metolachlor followed by fomesafen plus S-metolachlor; and sulfentrazone plus S-metolachlor followed by fomesafen plus S-metolachlor followed by acetochlor. Across all herbicide treatments, the sensitivity of cover crops to herbicide residues in the fall, from greatest to least, was forage radish = turnip > annual ryegrass = winter oat = triticale > cereal rye = Austrian winter pea = hairy vetch = wheat > crimson clover. Fomesafen (applied 21 and 42 days after planting [(DAP]); chlorimuron plus thifensulfuron and pyroxasulfone applied 42 DAP; sulfentrazone plus S-metolachlor followed by fomesafen plus S-metolachlor; and sulfentrazone plus S-metolachlor followed by fomesafen plus S-metolachlor followed by acetochlor caused the highest visual ground cover reduction to cover crop species at the fall rating. Study results indicate cover crops are most at risk when following herbicide applications in soybean containing certain active ingredients such as fomesafen, but overall there is a fairly low risk of cover crop injury from residual soybean herbicides applied in the previous soybean crop.
Recent commercialization of auxin herbicide–based weed control systems has led to increased off-target exposure of susceptible cotton cultivars to auxin herbicides. Off-target deposition of dilute concentrations of auxin herbicides can occur on cotton at any stage of growth. Field experiments were conducted at two locations in Mississippi from 2014 to 2016 to assess the response of cotton at various growth stages after exposure to a sublethal 2,4-D concentration of 8.3 g ae ha-1. Herbicide applications occurred weekly from 0 to 14 weeks after emergence (WAE). Cotton exposure to 2,4-D at 2 to 9 WAE resulted in up to 64% visible injury, whereas 2,4-D exposure 5 to 6 WAE resulted in machine-harvested yield reductions of 18% to 21%. Cotton maturity was delayed after exposure 2 to 10 WAE, and height was increased from exposure 6 to 9 WAE due to decreased fruit set after exposure. Total hand-harvested yield was reduced from 2,4-D exposure 3, 5 to 8, and 13 WAE. Growth stage at time of exposure influenced the distribution of yield by node and position. Yield on lower and inner fruiting sites generally decreased from exposure, and yield partitioned to vegetative or aborted positions and upper fruiting sites increased. Reductions in gin turnout, micronaire, fiber length, fiber-length uniformity, and fiber elongation were observed after exposure at certain growth stages, but the overall effects on fiber properties were small. These results indicate that cotton is most sensitive to low concentrations of 2,4-D during late vegetative and squaring growth stages.
We conducted research to evaluate various herbicides for POST false-green kyllinga control in cool-season turfgrass (primarily creeping bentgrass). In a preliminary evaluation, single and sequential applications of halosulfuron-methyl (70 g ai ha-1), mesotrione (175 g ai ha-1), and sulfentrazone (140 g ai ha-1), as well as a single application of imazosulfuron (740 g ai ha-1), were evaluated in New Jersey. Imazosulfuron and sequential applications of halosulfuron-methyl controlled false-green kyllinga >93% at 9 and 18 wk after initial treatment (WAIT). Sulfentrazone and mesotrione controlled false-green kyllinga <50%. Additional experiments were conducted to evaluate single and sequential applications of halosulfuron-methyl (70 g ha-1), imazosulfuron (420 and 740 g ha-1), and sulfentrazone (140 g ha-1) in New Jersey and Indiana at two locations in each state. At 12 WAIT, imazosulfuron generally controlled false-green kyllinga more effectively than other treatments at all locations. Sequential applications of imazosulfuron controlled false-green kyllinga 100% at 12 WAIT. Halosulfuron-methyl was less effective in Indiana than in New Jersey. Sulfentrazone controlled false-green kyllinga <40% at 12 WAIT. This research demonstrates that imazosulfuron is more effective than halosulfuron-methyl and sulfentrazone for POST false-green kyllinga control in cool-season turf.
Evolution and rapid spread of herbicide-resistant (HR) kochia has become a significant challenge for growers in the U.S. Great Plains. The main objectives of this research were to confirm and characterize the response of putative auxinic HR (Aux-HR) kochia accessions (designated as KS-4A, KS-4D, KS-4H, KS-10A, KS-10-G, and KS-10H) collected from two different corn fields near Garden City, KS, to dicamba and fluroxypyr and to determine the EPSPS gene copy number to detect whether those accessions were also resistant to glyphosate. Single-dose experiments indicated that putative Aux-HR kochia accessions had 78% to 100% and 85% to 100% survivors when treated with dicamba (560 g ae ha – 1) and fluroxypyr (235 g ae ha–1), respectively. Whole-plant dicamba dose–response studies revealed that the selected Aux-HR accessions had 2.9- to 15.1- and 3.1- to 9.4-fold resistance to dicamba relative to two susceptible accessions (MT-SUS and KS-SUS). In a separate fluroxypyr dose–response experiment, the selected Aux-HR accessions also exhibited 3.8- to 7.3- and 3.0- to 8.6-fold resistance to fluroxypyr on the basis of shoot fresh and dry weight responses, respectively. The confirmed Aux-HR kochia accessions also had 3 to 13 EPSPS gene copies relative to MT-SUS and KS-SUS accessions (each with 1 EPSPS gene copy). These results suggest that the putative Aux-HR kochia accessions from Kansas had developed moderate to high levels of cross-resistance to dicamba and fluroxypyr and low to high levels of resistance to glyphosate. This is the first confirmation of kochia accessions with cross-resistance to dicamba and fluroxypyr in Kansas. Growers should use diverse kochia control programs, including the proper use of dicamba and fluroxypyr stewardship, use of cover crops, occasional tillage, diversified crop rotations, and alternative effective herbicides to prevent further evolution and spread of Aux-HR kochia on their fields.
Nomenclature: Dicamba; fluroxypyr; glyphosate; kochia, Bassia scoparia (L.) A. J. Scott
Dicamba-resistant (DR) kochia is an increasing concern for growers in the US Great Plains, including Kansas. Greenhouse and field experiments (Garden City and Tribune, KS, in the 2014 to 2015 growing season) were conducted to characterize the dicamba resistance levels in two recently evolved DR kochia accessions collected from fallow fields (wheat–sorghum–fallow rotation) near Hays, KS, and to determine the effectiveness of various PRE herbicide tank mixtures applied in fall or spring prior to the fallow year. Dicamba dose–response studies indicated that the KS-110 and KS-113 accessions had 5- to 8-fold resistance to dicamba, respectively, relative to a dicamba-susceptible (DS) accession. In separate field studies, atrazine-based PRE herbicide tank mixtures, dicamba + pendimethalin + sulfentrazone, and metribuzin + sulfentrazone when applied in the spring had excellent kochia control (85% to 95%) for 3 to 4 mo at the Garden City and Tribune sites. In contrast, kochia control with those PRE herbicide tank mixtures when applied in the fall did not exceed 79% at the later evaluation dates. In conclusion, the tested kochia accessions from western Kansas had evolved moderate to high levels of resistance to dicamba. Growers should utilize these effective PRE herbicide tank mixtures (multiple sites of action) in early spring to manage kochia seed bank during the summer fallow phase of this 3-yr crop rotation (wheat–corn/sorghum–fallow) in the Central Great Plains.
Palmer amaranth is one of the most problematic weeds in cropping systems of North America, especially in midsouthern United States, because of its competitive ability and propensity to evolve resistance to several herbicide sites of action. Previously, we confirmed and characterized the first case of nontarget site resistance (NTSR) to fomesafen in a Palmer amaranth accession from Randolph County, AR (RCA). The primary basis of the present study was to evaluate the cross- and multiple-resistance profile of the RCA accession. The fomesafen dose-response assay in the presence of malathion revealed a lower level of RCA resistance when compared with fomesafen alone. The resistance index of the RCA accession, based on 50% biomass reduction, ranged from 63-fold (fomesafen alone) to 22-fold (malathion plus fomesafen), when compared with a 2007 susceptible, and 476-fold and 167-fold, respectively, relative to a 1986 susceptible check. The RCA accession was resistant to other protoporphyrinogen oxidase (PPO) inhibitors (i.e., flumioxazin, acifluorfen, saflufenacil) as well as the 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor tembotrione and acetolactate synthase (ALS) inhibitor pyrithiobac sodium. Sequencing of the ALS gene revealed no point mutations, indicating that a target-site mechanism is not involved in conferring ALS-inhibitor resistance in the RCA accession. Of the three PPO-inhibiting herbicides tested in combination with the malathion, saflufenacil resulted in the greatest biomass reduction (80%; P < 0.05) and lowest survival rate (23%; P < 0.05) relative to nontreated plants. The application of cytochrome P450 or glutathione S-transferase inhibitors with fomesafen did not lead to any adverse effects on soybean, suggesting a possible role for these compounds for management of NTSR under field conditions. These results shed light on the relative unpredictability of NTSR in conferring herbicide cross- and multiple resistance in Palmer amaranth.
A state-level survey was conducted across major row-crop production regions of Texas to document the level of sensitivity of Palmer amaranth to glyphosate, atrazine, pyrithiobac, tembotrione, fomesafen, and dicamba. Between 137 and 161 Palmer amaranth populations were evaluated for sensitivity to the labelled field rate (1X), and rated as resistant (≤49% injury), less sensitive (50% to 89% injury), or susceptible (90% to 100% injury). For glyphosate, 62%, 19%, 13%, and 13% of the populations from the High Plains, Central Texas, Rio Grande Valley, and Lower Gulf Coast, respectively, were resistant. Resistance to atrazine was more common in Palmer amaranth populations from the High Plains than in other regions, with 16% of the populations resistant and 22% less sensitive. Approximately 90% of the populations from the High Plains that exhibited resistance to atrazine POST also were resistant to atrazine PRE. Of the 160 populations tested for pyrithiobac, approximately 99% were resistant or less sensitive, regardless of the region. No resistance was found to fomesafen, tembotrione, or dicamba. However, 22% of the populations from the High Plains were less sensitive to 1X (93 g ai ha-1) tembotrione, but were killed at 2X, illustrating the background variability in sensitivity to this herbicide. For dicamba, three populations, all from the High Plains, exhibited less sensitivity at the 1X rate (controlled at the 2X rate; 1X = 560 g ae ha-1). One population exhibited multiple resistance to three herbicides with distinct sites of action (SOAs) involving acetolactate synthase, 5-enolpyruvylshikimate-3-phosphate synthase, and photosystem II inhibitors. Palmer amaranth populations exhibited less sensitivity to approximately 15 combinations of herbicides involving up to five SOAs. Dose-response assays conducted on the populations most resistant to glyphosate, pyrithiobac, or atrazine indicated they were 30-, 32-, or 49-fold or more resistant to these herbicides, respectively, compared with a susceptible standard.
Horseweed biotypes resistant to glyphosate and ALS-inhibiting herbicides are becoming more prevalent in Canada and the United States and present a significant management challenge in field crops. Tolpyralate is a recently commercialized herbicide for use in corn that inhibits 4-hydroxyphenylpyruvate dioxygenase (HPPD), and there is little information regarding its efficacy on horseweed. Six field experiments were conducted in 2017 and 2018 at four locations in Ontario, Canada, to determine the biologically effective dose of tolpyralate and tolpyralate + atrazine and to compare label rates of tolpyralate and tolpyralate + atrazine to currently accepted herbicide standards for POST control of glyphosate and cloransulam-methyl resistant (MR) horseweed. At 8 wk after application (WAA), tolpyralate at 4.8 and 22.6 g ha–1 provided 50% and 80% control, respectively. When applied with atrazine at a 1: 33.3 tank-mix ratio, 22.3 + 741.7 g ha–1 provided 95% control of MR horseweed. The addition of atrazine to tolpyralate at label rates improved control of MR horseweed to 98%, which was similar to the control provided by dicamba: atrazine and bromoxynil + atrazine. The results of this study indicate that tolpyralate + atrazine provides excellent control of MR horseweed POST in corn.
Nomenclature: Atrazine; bromoxynil; cloransulam-methyl; glyphosate; tolpyralate; horseweed; Conyza canadensis (L.) Cronq.; field corn, Zea mays L.
Research from the 1980s reported sweep cultivation being a cost-effective component in an integrated system to manage weeds in peanut. Previous weed management research conducted on organic peanut indicated that repeated cultivation with a tine weeder was an effective component in that production system. Studies were conducted in Tifton, GA, from 2014 through 2017 to determine whether tine weeding can be integrated with herbicides in conventional peanut production to supplement herbicides. Experiments evaluated a factorial arrangement of eight herbicide combinations and two levels of cultivation using a tine weeder. Herbicides were labeled rates of ethalfluralin PRE, S-metolachlor PRE, imazapic POST, ethalfluralin PRE + S-metolachlor PRE, ethalfluralin PRE + imazapic POST, S-metolachlor PRE + imazapic POST, ethalfluralin PRE + S-metolachlor PRE + imazapic POST, and a nontreated control. The herbicides chosen were based on knowledge of the weed species composition at the research sites and their common use in peanut. Cultivation regimes were cultivation with a tine weeder (six times at weekly intervals) and a noncultivated control. Benefits of tine weeding supplementing control from herbicides varied according to herbicide and weed species. For example, annual grasses were effectively controlled (88% to 97%) by ethalfluralin or S-metolachlor and did not need cultivation to supplement control provided by the herbicides. However, imazapic alone did not effectively control (54% to 75%) annual grasses and needed supplemental control from cultivation with the tine weeder. Similarly, imazapic effectively controlled (84% to 93%) smallflower morningglory and did not require cultivation to supplement control from the herbicide. However, cultivation with the tine weeder improved smallflower morningglory control (76% to 95%) when supplementing ethalfluralin or S-metolachlor. Peanut yields did not respond to any of the herbicide combinations integrated with cultivation using the tine weeder. During the time period when peanut was cultivated, there was greater total rainfall and more days of rainfall events in 2014 and 2017 compared with the other years. Rainfall and wet soils reduced the performance and weed control benefits of the tine weeder. This highlights the risk of depending on cultivation for weed control.
Studies were conducted at six locations across North Carolina to determine tolerance of ‘Sunbelt’ grape (bunch grape) and muscadine grape (‘Carlos’, ‘Triumph’, ‘Summit’) to indaziflam herbicide. Treatments included indaziflam (0, 50, 73 g ai ha-1) or flumioxazin (213 g ai ha-1) applied alone in April, and sequential applications of indaziflam (36, 50, 73 g ai ha-1) or flumioxazin (213 g ai ha-1) applied in April followed by the same rate applied in June. No crop injury was observed across locations. Muscadine yield was not affected by herbicide treatments. Yield of ‘Sunbelt’ grape increased with sequential applications of indaziflam at 73 g ha-1 when compared to a single application of indaziflam at 50 g ha-1 or flumioxazin at 213 g ha-1 in 2015. Sequential applications of flumioxazin at 213 g ha-1 reduced ‘Sunbelt’ yield compared to a single application of indaziflam at 73 g ha-1 in 2016. Trunk cross-sectional area was unaffected by herbicide treatments. Fruit quality (soluble solids concentration, titratable acidity, and pH) for muscadine and bunch grape was not affected by herbicide treatments. Indaziflam was safe to use at registered rates and could be integrated into weed management programs for southern US vineyards.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere