Rouzbeh Zangoueinejad, Mohammad Taghi Alebrahim, Te Ming Tseng
Weed Technology 33 (6), 815-822, (12 July 2019) https://doi.org/10.1017/wet.2019.51
KEYWORDS: herbicide drift, herbicide tolerance
Tomato is injured by low doses of 2,4-D, dicamba, quinclorac, and glyphosate. New crop varieties resistant to 2,4-D and dicamba are likely to increase use of these herbicides and may increase drift problems. There is a diverse germplasm of tomato available that includes wild relatives known to be tolerant to numerous biotic and abiotic stresses. A greenhouse and field study was conducted to investigate auxin tolerance in three wild tomato accessions (TOM199, TOM198, and TOM300) and compare them with two commercial tomato cultivars (‘Money Maker' and ‘Better Boy'). Auxin herbicides, which included 2,4-D, dicamba, and quinclorac, were applied at doses of 11, 3, and 39 g ae ha–1, respectively. Visible injury ratings of each accession for each herbicide treatment were recorded at 7, 14, 21, and 28 d after treatment (DAT) on a 0% to 100% scale. Results indicate that all three wild tomato accessions exhibited less than 15% injury compared with 100% injury for two commercial cultivars after application of dicamba. The three wild accessions (TOM199, TOM198, and TOM300) did not show any significant reduction in plant height compared with nontreated plants. At 28 DAT, plant heights of TOM199, TOM198, and TOM300 were 25, 25, and 28 cm when treated with dicamba and 31, 30, and 31 cm nontreated, respectively. Based on these results, the identified lines can serve as a genetic resource for developing herbicide-tolerant tomato, thus minimizing or eliminating the negative impacts of drift from nonlabeled herbicides tested in this project.
Nomenclature: 2,4-D; dicamba; glyphosate; quinclorac; tomato, Solanum lycopersicum L.