BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Herbicides have been a primary means of managing undesirable brush on grazing lands across the southwestern United States for decades. Continued encroachment of honey mesquite and huisache on grazing lands warrants evaluation of treatment life and economics of current and experimental treatments. Treatment life is defined as the time between treatment application and when canopy cover of undesirable brush returns to a competitive level with native forage grasses (i.e., 25% canopy cover for mesquite and 30% canopy cover for huisache). Treatment life of industry-standard herbicides was compared with that of aminocyclopyrachlor plus triclopyr amine (ACP+T) from 10 broadcast-applied honey mesquite and five broadcast-applied huisache trials established from 2007 through 2013 across Texas. On average, the treatment life of industry standard treatments (IST) for huisache was 3 yr. In comparison, huisache canopy cover was only 2.5% in plots treated with ACP+T 3 yr after treatment. The average treatment life of IST for honey mesquite was 8.6 yr, whereas plots treated with ACP+T had just 2% mesquite canopy cover at that time. Improved treatment life of ACP+T compared with IST life was due to higher mortality resulting in more consistent brush canopy reduction. The net present values (NPVs) of ACP+T and IST for both huisache and mesquite were similar until the treatment life of the IST application was reached (3 yr for huisache and 8.6 yr for honey mesquite). At that point, NPVs of the programs diverged as a result of brush competition with desirable forage grasses and additional input costs associated with theoretical follow-up IST necessary to maintain optimum livestock forage production. The ACP+T treatments did not warrant a sequential application over the 12-yr analysis for huisache or 20-yr analysis for honey mesquite that this research covered. These results indicate ACP+T provides cost-effective, long-term control of honey mesquite and huisache.
Huisache is a major brush problem on native rangelands and pastures in South Texas. Although herbicide applications to foliage provide very high plant-kill levels, the same herbicides have not proven reliable when applied as broadcast ground or aerial foliar treatments. Aerial and ground broadcast herbicide foliar treatments were applied to 31 huisache sites. Soil temperature and soil moisture were measured at a depth of 30 cm at the time of herbicide application. Cumulative rainfall before herbicide application was recorded. Across all aerial treatments, plant mortality was 69% for plants shorter than 2 m versus 40% for plants taller than 2 m. Across all aerial- and ground-treated sites, plants shorter than 2 m had an average 89% mortality when cumulative 2-wk rainfall was at least 50 mm, versus 72% mortality with cumulative rainfall less than 50 mm. Average plant mortality was 84% when 4-wk cumulative rainfall was at least 76 mm, versus 71% with rainfall less than 76 mm; and 85% when, on a dry-to-wet scale of 0 to 10, soil moisture measured at least 8, versus 71% when soil moisture measured less than 8. In a separate aerial trial, plant-mortality effects of spray droplet size (417, 630, and 800 µm) and spray volume (37.4 L ha–1 and 93.5 L ha–1) were replicated and tested at a single study site in 2014. Plant mortality was lowest for the 93.5 L ha–1 and 800 µm treatment. Plant mortality rates for other treatments were similar, demonstrating a greater importance of droplet size than spray volume. Targeting huisache trees shorter than 2 m, when cumulative rainfall has reached at least 50 mm or at least 76 mm 2 or 4 wk before application, respectively, as well as maintaining spray droplet sizes no larger than 630 µm can increase herbicide efficacy with foliar broadcast applications.
A study was conducted in 2017 and 2018 at the H. Rouse Caffey Rice Research Station near Crowley, LA, to evaluate quizalofop at 120 g ai ha–1 applied independently or in a mixture with clomazone, pendimethalin, clomazone plus pendimethalin, or a prepackaged mixture of clomazone plus pendimethalin when PVLO1 rice reached the two- to three-leaf stage. A second application of quizalofop at 120 g ha–1 was applied 21 d after the initial application. At 7 days after treatment (DAT), antagonism of quizalofop occurred when mixed with clomazone at 334 g ai ha–1, clomazone at 334 g ai ha–1 plus pendimethalin at 810 g ai ha–1, or a prepackaged mixture of clomazone plus pendimethalin at 334 plus 810 g ai ha–1, respectively, when applied to barnyardgrass. At 7 DAT, a neutral interaction occurred with a mixture of quizalofop plus pendimethalin at 810 g ha–1. These data indicate the antagonism of quizalofop was overcome at 14, 28, and 42 DAT with a neutral interaction for barnyardgrass control, 94% to 98%, with all herbicide mixtures evaluated. A neutral interaction occurred for CL-111, CLXL-745, and red rice control when treated with all the herbicide mixtures evaluated across all evaluation dates. Rice yield decreased when not treated with the initial quizalofop application.
Nomenclature: clomazone; pendimethalin; quizalofop; barnyardgrass; Echinochloa crus-galli (L.) P. Beauv.; red rice; Oryza sativa L; rice; O. sativa L.
Understanding the critical time of weed removal (CTWR) is necessary for designing effective weed management programs in popcorn production that do not result in yield reduction. The objective of this study was to determine the CTWR in popcorn with and without a premix of atrazine and S-metolachlor applied PRE. Field experiments were conducted at the University of Nebraska–Lincoln, South Central Agricultural Laboratory near Clay Center, NE in 2017 and 2018. The experiment was laid out in a split-plot design with PRE herbicide as the main plot and weed removal timing as the subplot. Main plots included no herbicide or atrazine/S-metolachlor applied PRE. Subplot treatments included a weed-free control, a non-treated control, and weed removal timing at V3, V6, V9, V15, and R1 popcorn growth stages and then kept weed free throughout the season. A four-parameter log-logistic function was fitted to percentage popcorn yield loss and growing degree days separately to each main plot. The number of growing degree days, when 5% yield loss was achieved, was extracted from the model and compared between main plots. The CTWR was from the V4 to V5 popcorn growth stage in absence of PRE herbicide. With atrazine/S-metolachlor applied PRE, the CTWR was delayed until V10 to V15. It is concluded that, to avoid yield loss, weeds must be controlled before the V4 popcorn growth stage when no PRE herbicide is applied, and PRE herbicide, such as atrazine/S-metolachlor in this study, can delay the CTWR until the V10 growth stage.
Nomenclature: Atrazine; S-metolachlor; popcorn, Zea mays (L.) var. everta
Six on-farm studies determined the effects of a rolled rye cover crop, herbicide program, and planting technique on cotton stand, weed control, and cotton yield in Georgia. Treatments included: (1) rye drilled broadcast with 19-cm row spacing and a broadcast-herbicide program (2) rye drilled with a 25-cm rye-free zone in the cotton row and a broadcast-herbicide program (3) rye drilled with a 25-cm rye-free zone in the cotton row with PPI and PRE herbicides banded in the cotton planting row, and (4) no cover crop (i.e., weedy cover) with broadcast herbicides. At two locations, cotton stand was lowest with rye drilled broadcast; at these sites the rye-free zone maximized stand equal to the no-cover system. At a third location, cover crop systems resulted in greater stand, due to enhanced soil moisture preservation compared with the no-cover system. Treatments did not influence cotton stand at the other three locations and did not differ in the control of weeds other than Palmer amaranth at any location. Treatments controlled Palmer amaranth equally at three locations; however, differences were observed at the three locations having the greatest glyphosate-resistant plant densities. For these locations, when broadcasting herbicides, Palmer amaranth populations were reduced 82% to 86% in the broadcast rye and rye-free zone systems compared with the no-cover system at harvest. The system with banded herbicides was nearly 21 times less effective than the similar system broadcasting herbicides. At these locations, yields in the rye broadcast and rye-free zone systems with broadcast herbicides were increased 9% to 16% compared with systems with no cover or a rye-free zone with PPI and PRE herbicides banded. A rolled rye cover crop can lessen weed emergence and selection pressure while improving weed control and cotton yield, but herbicides should be broadcast in fields heavily infested with glyphosate-resistant Palmer amaranth.
Nomenclature: cereal rye; Secale cereale L.; Palmer amaranth; Amaranthus palmeri S. Watson AMAPA; cotton; Gossypium hirsutum L.
Field studies were conducted over six seasons to determine the critical period for weed control (CPWC) in high-yielding cotton, using common sunflower as a mimic weed. Common sunflower was planted with or after cotton emergence at densities of 1, 2, 5, 10, 20, and 50 plants m–2. Common sunflower was added and removed at approximately 0, 150, 300, 450, 600, 750, and 900 growing degree days (GDD) after planting. Season-long interference resulted in no harvestable cotton at densities of five or more common sunflower plants m–2. High levels of intraspecific and interspecific competition occurred at the highest weed densities, with increases in weed biomass and reductions in crop yield not proportional to the changes in weed density. Using a 5% yield-loss threshold, the CPWC extended from 43 to 615 GDD, and 20 to 1,512 GDD for one and 50 common sunflower plants m–2, respectively. These results highlight the high level of weed control required in high-yielding cotton to ensure crop losses do not exceed the cost of control.
Nomenclature: Common sunflower, Helianthus annuus L. HELAN; cotton, Gossypium hirsutum L. GOHI
The adoption of chemical fallow rotations in Pacific Northwest dryland winter wheat production has caused a weed species composition shift in which scouringrush has established in production fields. Thus, there has been interest in identifying herbicides that effectively control scouringrush in winter wheat–chemical fallow cropping systems. Field experiments were established in growers' fields near Reardan, WA, in 2014, and The Dalles, OR, in 2015. Ten herbicide treatments were applied to mowed and nonmowed plots during chemical fallow rotations. Scouringrush stem densities were quantified the following spring and after wheat harvest at both locations. Chlorsulfuron plus MCPA-ester resulted in nearly 100% control of scouringrush through wheat harvest. Before herbicide application, mowing had no effect on herbicide efficacy. We conclude chlorsulfuron plus MCPA-ester is a commercially acceptable treatment for smooth and intermediate scouringrush control in winter wheat–chemical fallow cropping systems; however, the lack of a positive yield response when scouringrushes were controlled should factor into management decisions.
Nomenclature: Chlorsulfuron; MCPA; intermediate scouringrush; Equisetum × ferrissii Clute; smooth scouringrush; Equisetum laevigatum A. Braun; winter wheat; Triticum aestivum L.
Tomato is injured by low doses of 2,4-D, dicamba, quinclorac, and glyphosate. New crop varieties resistant to 2,4-D and dicamba are likely to increase use of these herbicides and may increase drift problems. There is a diverse germplasm of tomato available that includes wild relatives known to be tolerant to numerous biotic and abiotic stresses. A greenhouse and field study was conducted to investigate auxin tolerance in three wild tomato accessions (TOM199, TOM198, and TOM300) and compare them with two commercial tomato cultivars (‘Money Maker' and ‘Better Boy'). Auxin herbicides, which included 2,4-D, dicamba, and quinclorac, were applied at doses of 11, 3, and 39 g ae ha–1, respectively. Visible injury ratings of each accession for each herbicide treatment were recorded at 7, 14, 21, and 28 d after treatment (DAT) on a 0% to 100% scale. Results indicate that all three wild tomato accessions exhibited less than 15% injury compared with 100% injury for two commercial cultivars after application of dicamba. The three wild accessions (TOM199, TOM198, and TOM300) did not show any significant reduction in plant height compared with nontreated plants. At 28 DAT, plant heights of TOM199, TOM198, and TOM300 were 25, 25, and 28 cm when treated with dicamba and 31, 30, and 31 cm nontreated, respectively. Based on these results, the identified lines can serve as a genetic resource for developing herbicide-tolerant tomato, thus minimizing or eliminating the negative impacts of drift from nonlabeled herbicides tested in this project.
Nomenclature: 2,4-D; dicamba; glyphosate; quinclorac; tomato, Solanum lycopersicum L.
Commercial mushroom producers grow several varieties of mushrooms on compost. Upon completion of the growing cycle, the spent mushroom compost is often sold as a soil amendment for both agricultural and homeowner use. Mushroom compost ingredients often come from fields infested with weeds, and in turn compost may spread unwanted weed seed. We conducted studies to assess the viability of weed seed following specific stages of the commercial mushroom production process. Weed seed was more likely to survive if the entire production process was not completed. However, no viable hairy vetch, Italian ryegrass, ivyleaf morningglory, Palmer amaranth, or velvetleaf remained at the end of the study. Although the seeds of most species were eliminated earlier in the composting process, ivyleaf morningglory required the complete process to eliminate 100% of the seed. These results indicate that spent mushroom compost is free of many weed species upon removal from mushroom houses and is unlikely to spread weed seed.
Experiments were conducted to evaluate the impact of spray volume, nozzle type, adjuvants, the presence of dew, and their interactions on foliar retention of creeping bentgrass. Tartrazine, a common food dye, was used as a tracer in this study. Increasing spray volume from 95 L ha–1 to 1,500 L ha–1 decreased foliar retention efficiency from 98% to approximately 85%. Compared with flat-fan nozzles, air-induction nozzles delivered similar retention efficiency at all spray volumes evaluated. However, flat-fan nozzles provided higher uniformity and more thorough coverage. Adding nonionic surfactants, organosilicone adjuvants, or methylated seed oils at typical concentrations yielded retention efficiency of approximately 90% to 93% regardless of spray volumes. In contrast, with water alone, increasing spray volume reduced retention efficiency from 95.9% to 87.3%. Simulated dew applied at 1,950 L ha–1 increased retention efficiency by approximately 3% when spray application volume was 190 L ha–1, while no difference was observed at 750 L ha–1. The presence of dew reduced the impact of adjuvants on retention efficiency. Large quantities of dew, 3,800 L ha–1, did reduce retention efficiency.
Nomenclature: Creeping bentgrass; Agrostis stolonifera L. AGSST ‘L93'
Goosegrass is considered one of the worst agricultural weeds worldwide. Understanding its life cycle will provide useful management information. Field experiments with six emergence times (April, May, June, July, August, and September) were conducted at Anyang, China in 2015 and 2017 to clarify the growth and reproduction of goosegrass emerging at different times within a season. The result showed that plant height, dry weight, average weight per inflorescence, total inflorescence weight, average seed number per inflorescence, and total number of seeds per plant were relatively low in the April cohort, peaked with the May or June emergence cohort, and decreased thereafter. However, the earliest emergence of goosegrass in April had the highest total number of inflorescences. The plants of the May cohort produced the greatest number of seeds: 225,954 and 322,501 seeds per plant in 2015 and 2017, respectively. Delayed emergence resulted in less seed production; most plants that emerged in September did not flower or set seed. The 1,000-seed weight did not vary among the emergence cohorts. The reproductive investment was lowest for plants of the May cohort and then increased as emergence time was delayed to June, July, and August. Fresh mature seed of all emergence cohorts was extremely dormant and had low germination only up to 6% from August to November, and high germination (44% to 93%) in December. The information gained from this study indicates that weed management strategies should focus on the early-emerged seedlings such as the April and May cohorts, so as to effectively prevent goosegrass seed production, minimize the weed seed replenishment into the soil seed bank, and reduce the infestation in subsequent seasons.
Hair fescue is a widespread, seed-limited perennial grass in lowbush blueberry fields. Growers rely on pronamide, an expensive and difficult herbicide to use, for hair fescue management. Recent herbicide registrations provide opportunity to reduce pronamide use, though effects of these herbicides on hair fescue suppression and seedbank reduction are not well understood. The objectives of this research were to determine (1) the effects of herbicides currently registered in lowbush blueberry on suppression of hair fescue tufts and (2) whether suppression of hair fescue with these herbicides reduces hair fescue seedbanks. Pronamide gave the most consistent reductions in flowering tuft density, though applications after both autumn pruning and autumn of the nonbearing year were required to reduce the hair fescue seedbank by >60% across sites. Nonbearing-year hexazinone applications did not control hair fescue or reduce the seedbank. Nonbearing-year terbacil applications reduced flowering tuft density, but hair fescue recovered in the bearing year, and the seedbank was not reduced. Glufosinate applications following autumn pruning or in the spring of the nonbearing year did not suppress hair fescue or reduce the seedbank. Spring nonbearing-year foramsulfuron applications, alone or after autumn or spring glufosinate applications, reduced hair fescue flowering tuft density, but hair fescue recovered in the bearing year, and the seedbank was not reduced. In contrast, autumn and spring glufosinate applications followed by spring nonbearing-year foramsulfuron applications, when combined with autumn nonbearing-year pronamide applications, reduced flowering tuft density in both the nonbearing and bearing years and reduced the hair fescue seedbank by 58% to 83% across sites. Results indicate that hair fescue seedbanks can be reduced in lowbush blueberry fields and that a reduction in pronamide use will require alternative bearing-year treatments to prevent tuft recovery and seed production.
Farmer training is important to improve weed management practices in tea cultivation. To explore the group characteristics of tea growers, we interviewed 354 growers in Guizhou Province, China. Sixty-one percent of the respondents planted tea for companies or cooperative groups, and 56% managed tea gardens larger than 10 ha. Self-employed tea growers tended to be older and smallholders, and to apply herbicides and conduct weed control less frequently (P < 0.05). Approximately 87% of the respondents conducted weed control two to four times yr–1, 83% spent between $200 and $2,000 ha–1 yr–1 for weed control, and 42% thought weed control costs would decrease by 5 years from this study. Twenty-eight species were mentioned by the respondents as being the most serious. According to canonical correspondence analysis, latitude, altitude, being self-employed or a member of a cooperative, having training experience in tea-garden weed management, and frequency and cost of weed control in tea gardens had significant (P < 0.05) influence on the composition of most troublesome weed species listed by respondents. Among the respondents, 60% had had farmer's training on weed management in tea gardens. Of these, a significant number (P < 0.05) tended to think weed control costs would decrease, and a nonsignificant number (P > 0.05) tended to conduct weed control more frequently and have lower weed management costs in their tea gardens.
Field studies were conducted at the Pontotoc Ridge–Flatwoods Branch Experiment Station in Pontotoc, MS, in 2016 and 2017 to determine sweetpotato crop response to saflufenacil and rimsulfuron/thifensulfuron-methyl. Saflufenacil treatments consisted of a factorial of two rates (25 or 50 g ai ha–1) by three application timings [0, 3, or 6 wk before transplanting (WBP)]. Rimsulfuron/thifensulfuron-methyl treatments consisted of a factorial of two rates (18/18 or 35/35 g ai ha–1) by two application timings (3 or 6 WBP). A nontreated check was included for comparison. Saflufenacil resulted in as much as 20% stunting injury in 2016, but ≤4% crop injury in 2017. Compared to the nontreated check, saflufenacil did not reduce yield of any sweetpotato grade regardless of application rate or timing. Findings from this trial indicate that saflufenacil applied in pre-transplanting burndown and field preparation procedures did not have a negative impact on the subsequent sweetpotato crop and that the current plant-back interval (4 to 5 mo) may be excessive. Applications of rimsulfuron/thifensulfuron-methyl at 35/35 g ha–1 made 3 WBP resulted in significant crop injury but did not reduce yield of any sweetpotato grade. Findings from this trial suggest that rimsulfuron/thifensulfuron-methyl applications up to 35/35 g ha–1 applied at least 6 WBP and 18/18 g ha–1 applied at least 3 WBP had little impact on sweetpotato crop growth and may be a safe preplant burndown option.
Glyphosate-resistant (GR) horseweed is one of the most common and troublesome weeds in soybean production fields in several states in the United States, including Nebraska. The evolution of horseweed resistant to several herbicide sites of action has prioritized an integrated approach, including tillage, for effective management of this problem weed. The objectives of this study were to evaluate the effect of tillage or herbicide applied in fall or spring followed by a PRE, POST, and PRE followed by a POST herbicide program for GR horseweed control as well as GR soybean injury and yield in Nebraska. Field studies were established in the fall 2014–2015 and 2015–2016 growing seasons using a factorial randomized complete block design with shallow tillage or herbicide applied at different timings as two factors. Shallow tillage was accomplished using a 50-cm-wide rototiller operated at a depth of 10 cm. At soybean harvest, tillage applied the previous year in fall or spring without any follow-up herbicide treatment provided 79% to 88% horseweed control compared with 27% and 56% control with 2,4-D plus carfentrazone applied in fall and spring, respectively. Tillage or herbicide applied in fall or spring followed by a PRE, POST, or PRE and POST herbicide provided 82% to 99% GR horseweed control at soybean harvest. Soybean yield in this study was similar in most treatments. Tillage or herbicide applied in fall or spring provided similar horseweed control and soybean yield when followed by a PRE, POST, or PRE and POST herbicide; therefore, fall- or spring-applied herbicides can be rotated with shallow tillage for integrated season-long horseweed management.
Nomenclature: 2,4-D; carfentrazone; horseweed; Erigeron canadensis L.; soybean; Glycine max (L.) Merr
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere