The Caryophyllales are one of the major lineages of angiosperms, including some 12 000 species and well known families such as Amaranthaceae, Cactaceae, Caryophyllaceae, Droseraceae, Nyctaginaceae and Polygonaceae. Phylogenetic hypotheses based on molecular characters have led to their circumscription and have considerably improved our understanding of interfamilial relationships. For this study, we generated a data set of the non-coding and rapidly evolving chloroplast petB-petD region, consisting of a transcribed spacer and a group II intron for 87 taxa of Caryophyllales and 22 outgroups. In addition, we analysed a complementary matK data set with complete sequences of the coding region. Trees obtained from both markers were well resolved and especially petD data yielded a well supported backbone for the Caryophyllales. The order is constituted by two sister clades, caryophyllids and polygonids, the latter containing a carnivorous subclade. Both Molluginaceae and Phytolaccaceae had been considered as polyphyletic, but not as severely as is now evident from this study with improved taxon sampling. As a great surprise, the hitherto unsampled genus Microtea is found with high support in an isolated position as the fourth branch in the caryophyllid clade. On the other hand, Lophiocarpus as the second genus of the Phytolaccaceae subfamily Microteoideae is sister to an Aizoaceae-Nyctaginaceae-Phytolaccaceae lineage. In line with their morphological distinctness, Microteaceae are described as a new family. Our data further resolve a distinct Mollugo clade, whereas Hypertelis appears to have affinities with Limeum, suggesting an expanded Limeaceae.
How to translate text using browser tools
4 January 2010
Caryophyllales phylogenetics: disentangling Phytolaccaceae and Molluginaceae and description of Microteaceae as a new isolated family
Bastian Schäferhoff,
Kai F. Müller,
Thomas Borsch
V. A. Albert
,
S. E. Williams
&
M. W. Chase
1992: Carnivorous plants. Phylogeny and structural evolution. —
Science
257: 1491–1495.
CrossRef
Google Scholar
APG III 2009: An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. — Bot. J. Linn. Soc. 161: 105–121.
CrossRef
Google Scholar
W. L. Applequist
&
R. S. Wallace
2001: Phylogeny of the portulacaceous cohort based on ndhF sequence data. — Syst. Bot. 26: 406–419. Google Scholar
W. L. Applequist
&
R. S. Wallace
2003. Expanded circumscription of Didiereaceae and its division into three subfamilies. — Adansonia 25: 13–16. Google Scholar
W. L. Applequist
,
W. L. Wagner
,
E. A. Zimmer
&
M. Nepokroeff
2006: Molecular evidence resolving the systematic position of Hectorella (Portulacaceae). —
Syst. Bot.
31: 310–319.
CrossRef
Google Scholar
H. G. Bedell
1980: A taxonomic and morphological re-evaluation of Stegnospermaceae (Caryophyllaceous). —
Syst. Bot.
5: 419–431. CrossRef Google Scholar
H.-D. Behnke
1993: Further studies of the sieve-element plastids of the Caryophyllaceous including Barbeuia, Corrigiola, Lyallia, Microtea, Sarcobatus and Telephium. —
Pl. Syst. Evol.
186: 231–243.
CrossRef
Google Scholar
H.-D. Behnke
1994: Sieve-element plastids: their significance for the evolution and systematics of the order. — Pp. 87–121 in:
H. D. Behnke
&
T. J. Mabry
(ed.),
Caryophyllales. Evolution and systematics. — Berlin. Google Scholar
H.-D. Behnke
1997:
Sarcobataceae — a new family of Caryophyllaceous. — Taxon 46: 495–507.
CrossRef
Google Scholar
T. Borsch
,
K. W. Hilu
,
D. Quandt
,
V. Wilde
,
C. Neinhuis
&
W. Barthlott
2003: Non-coding plastid trnT-trnF sequences reveal a well resolved phylogeny of basal angiosperms. —
J. Evol. Biol.
16: 558–576.
CrossRef
Google Scholar
A. Braun
1864: Übersicht des natürlichen Systems nach der Anordnung desselben. — Pp. 22–67 in:
P. Ascherson
(ed.),
Flora der Provinz Brandenburg, der Altmark und des Herzogthums Magdeburg 1. — Berlin. Google Scholar
S. F. Brockington
,
R. Alexandre
,
J. Ramdial
,
M. J. Moore
,
S. Crawley
,
A. Dhingra
,
K. Hilu
,
D. S. Soltis
&
P. S. Soltis
2009: Phylogeny of the Caryophyllaceous sensu lato: revisiting hypotheses on pollination biology and perianth differentiation in the core Caryophyllaceous. — Int. J. Pl. Sci. 170: 627–643.
CrossRef
Google Scholar
M. W. Chase
,
D. E. Soltis
,
R. G. Olmstead
,
D. Morgan
,
D. H. Les
,
B. D. Mishler
,
M. R. Duvall
,
R. A. Price
,
H. G. Hills
,
Y.-L. Qiu
,
K. A. Kron
,
J. H. Rettig
,
E. Conti
,
J. D. Palmer
,
J. R. Manhart
,
K. J. Sytsma
,
H. J. Michaels
,
W. J. Kress
,
K. G. Karol
,
W. D. Clark
,
M. Hedén
,
B. S. Gaut
,
R. K. Jansen
,
K.-J. Kim
,
C. F. Wimpee
,
J. F. Smith
,
G. R. Fumier
,
S. H. Strauss
,
Q. Xiang
,
G. M. Plunkett
,
P. S. Soltis
,
S. Swensen
,
S. E. Williams
,
P. A. Gadek
,
C. J. Quinn
,
L. E. Eguiarte
,
E. Goldenberg
,
G. H. Learn
,
S. W. Graham
,
S. C. H. Barrett
,
S. Dayanandan
&
V. A. Albert
1993: Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcL. —
Ann. Missouri Bot. Gard.
80: 528–581.
CrossRef
Google Scholar
J. S. Clement
&
T. J. Mabry
1996a: Chloroplast DNA evidence and family-level relationships in the Caryophyllaceous. — Amer J. Bot. 83 (suppl.): 143. Google Scholar
J. S. Clement
&
T. J. Mabry
1996b: Pigment evolution in the Caryophyllaceous: a systematic overview. —
Bot. Acta
109: 360–367. Google Scholar
A. Cronquist
1988: An integrated system of cassification of flowering plants. — New York. Google Scholar
A. Cronquist
&
R. F. Thorne
1994: Nomenclatural and taxonomic history. — Pp. 5–25 in:
H. D. Behnke
&
T. J. Mabry
,
Caryophyllaceous. Evolution and systematics. — Berlin. Google Scholar
P. Cuénoud
,
V. Avellanen
,
L. W. Chatrou
,
M. Powell
,
R. J. Grayer
&
M. W. Chase
2002: Molecular phylogenetics of Caryophyllaceous based on nuclear 18S rDNA and plastid rbcL, atoP, and matK DNA sequences. —
Amer. J. Bot.
89: 132–144.
CrossRef
Google Scholar
R. Dahlgren
1980: A revised system of classification of the angiosperms. —
Bot. J. Linn. Soc.
80: 91–124.
CrossRef
Google Scholar
A. Doweld
&
J. L. Reveal
2008: New suprageneric names of vascular plants. — Phytologia 90: 416–417. Google Scholar
S. R. Downie
&
J. D. Palmer
1994: A chloroplast DNA phylogeny of the Caryophyllaceous based on structural and inverted repeat restriction site variation. —
Syst. Bot.
19: 236–252.
CrossRef
Google Scholar
S. R. Downie
,
D. S. Katz-Downie
&
K. Cho
1997: Relationships in the Caryophyllaceous as suggested by phylogenetic analyses of partial chloroplast DNA ORF2280 homolog sequences. —
Amer. J. Bot.
84: 253–273.
CrossRef
Google Scholar
T. Eckardt
1954: Morphologische und systematische Auswertung der Placentacion von Phytolaccaceae. — Ber. Deutsch. Bot. Ges. 67: 113–129. Google Scholar
T. Eckardt
1964: Reihe Centrospermae. — Pp. 79–102 in:
H. Melchior
(ed.),
A. Engler's Syllabus der Pflanzenfamilien, ed. 2, 2. — Berlin. Google Scholar
T. Eckardt
1974: Vom Blütenbau der Centrospermen-Gattung Lophiocarpus Turcs. — Phyton (Horn) 16: 13–27. Google Scholar
F. Ehrendorfer
1976: Closing remarks: systematics and evolution of centrospermous families. —
Pl. Syst. Evol.
126: 99–106.
CrossRef
Google Scholar
M. A. Endress
&
V. Bittrich
1993:
Molluginaceae. — Pp. 419–426 in:
K. Kubitzki
(ed.).
Families and genera of vascular plants. — Berlin, etc. Google Scholar
D. E. Giannasi
,
G. Zurawski
,
G. Learn
&
M. T. Clegg
1992: Evolutionary relationships of the Caryophyllidae based on comparative rbcL sequences. —
Syst. Bot.
17: 1–15.
CrossRef
Google Scholar
A. Heimerl
1934:
Phytolaccaceae. — Pp. 135–164 in:
A. Engler
&
K. Prantl
(ed.),
Die natürlichen Pflanzenfamilien, ed. 2, 16c. — Leipzig & Berlin. Google Scholar
K. W. Hilu
,
T. Borsch
,
K. Müller
,
D. E. Soltis
,
P. S. Soltis
,
V. Avellanen
,
M.W. Chase
,
M. P. Powell
,
L. A. Alice
,
R. Evans
,
H. Sauquet
,
C. Neinhuis
,
T. A. B. Slotta
,
J. G. Rohwer
,
C. S. Campbell
&
L. W. Chatrou
2003: Angiosperm phylogeny based on matK sequence information. —
Amer. J. Bot.
90: 1758–1776.
CrossRef
Google Scholar
G. Kadereit
,
T. Borsch
,
K. Weising
&
H. Freitag
2003: Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. —
Int. J. Pl. Sci.
164: 959–986.
CrossRef
Google Scholar
C. Löhne
&
T. Borsch
2005: Molecular evolution and phylogenetic utility of the petD group II intron: a case study in basal angiosperms. —
Molec. Biol. Evol.
22: 317–332.
CrossRef
Google Scholar
J. R. Manhart
&
J. H. Rettig
1994. Gene sequence data. — Pp. 235–246 in:
H. D. Behnke
&
T. J. Mabry
,
Caryophyllaceous. Evolution and systematics. — Berlin, etc. Google Scholar
M. S. Marchioretto
&
J. C. de Siqueira
1998: Espécies endêmicas do Rio Grande do Sul (Angiospermas-Dicotiledôneas): Estudo dos padrões de distribuição geográfica. — Pesq., Bot. 48: 111–144. Google Scholar
H. Meimberg
,
P. Dittrich
,
G. Bringmann
,
J. Schlauer
&
G. Heubl
2000: Molecular phylogeny of Caryophyllidae s.l. based on matK sequences with special emphasis on carnivorous taxa. — Pl. Biol. 2: 218–228.
CrossRef
Google Scholar
C. H. B. A. Moquin-Tandon
1849:
Phytolaccaceae. — Pp. 2–40, 459–460 in:
A. P. de Candolle
(ed.),
Prodromus systematis naturalis regni vegetabilis 13. — Paris. Google Scholar
J. Müller
,
K. Müller
,
C. Neinhuis
&
D. Quandt
2005+: PhyDE: Phylogenetic Data Editor. — Published at http:\\www.phyde.de
Google Scholar
K. Müller
2004: PRAP, computation of Bremer support for large data sets. —
Molec. Phylogenet. Evol.
31: 780–782.
CrossRef
Google Scholar
K. Müller
&
T. Borsch
2005: Phylogenetics of Amaranthaceae based on matK/trnK sequence data. Evidence from parsimony, likelihood, and Bayesian analyses. — Ann. Missouri Bot. Gard. 92: 66–102. Google Scholar
K. Müller
2006: Incorporating information from length-mutational events into phylogenetic analysis. —
Molec. Phylogenet. Evol.
38: 667–676.
CrossRef
Google Scholar
K. Müller
,
T. Borsch
&
K. W. Hilu
2006: Phylogenetic utility of rapidly evolving DNA at high taxonomical levels: contrasting matK, trnT-F and rbcL in basal angiosperms. —
Molec. Phylogenet. Evol.
41: 99–117.
CrossRef
Google Scholar
T. Nakai
1942: Notulae ad plantas Asiae orientalis XVIII. J. Jap. Bot. 18: 91–120. Google Scholar
O. I. Nandi
,
M. W. Chase
&
P. K. Endress
1998: A combined cladistic analysis of angiosperms using rbcL and non-molecular data sets. —
Ann. Missouri Bot. Gard.
85: 137–214.
CrossRef
Google Scholar
J. W. Nowicke
1968: Palynotaxonomic study of the Phytolaccaceae. — Ann. Missouri Bot. Gard. 66: 997–1005. Google Scholar
R. Nyffeler
2007: The closest relatives of cacti: insights from phylogenetic analyses of chloroplast and mitochondrial sequences with special emphasis on relationships in the tribe Anacampseroteae. —
Amer. J. Bot.
94: 89–101.
CrossRef
Google Scholar
R. Nyffeler
&
U. Eggli
(
in press): Disintegrating Portulacaceae — a new familial classification of the suborder Portulacineae (Caryophyllaceous) based in molecular and morphological evidence. — Taxon. Google Scholar
J. H. Rettig
,
H. D. Wilson
&
J. R. Manhart
1992: Phylogeny of the Caryophyllaceous — gene sequence data. —
Taxon
41: 201–209.
CrossRef
Google Scholar
J. E. Rodman
1994: Cladistic and phenetic studies. — Pp. 279–301 in:
H. D. Behnke
&
T. J. Mabry
,
Caryophyllaceous. Evolution and systematics. — Berlin. Google Scholar
J. G. Rohwer
1993:
Phytolaccaceae. — Pp. 506–515 in:
K. Kubitzki
,
J. G. Rohwer
&
V. Bittrich
(volume ed.),
Families and genera of vascular plants 2. — Berlin, etc. Google Scholar
F. Ronquist
&
J. P. Huelsenbeck
2003: MrBayes 3: Bayesian phylogenetic inference under mixed models. —
Bioinformatics
19: 1572–1574.
CrossRef
Google Scholar
V. Savolainen
,
M. W. Chase
,
S. B. Hoot
,
C. M. Morton
,
D. E. Soltis
,
C. Bayer
,
M. F. Fay
,
A. Y. de Bruijn
,
S. Sullivan
&
Y.-L. Qiu
2000a: Phylogenetics of flowering plants based on combined analysis of plastid atoP and rbcL gene sequences. —
Syst. Biol.
49: 306–362.
CrossRef
Google Scholar
V. Savolainen
,
M. F Fay
,
D. C. Albach
,
A. Backlund
,
M. van der Bank
,
K. M. Cameron
,
S. A. Johnson
,
M. D. Lledó
,
J. C. Pintaud
,
M. Powell
,
M. C. Sheahan
,
D. E. Soltis
,
P. S. Soltis
,
P Weston
,
W. M. Whitten
,
K. J. Wurdack
&
M. W. Chase
2000b: Phylogeny of the eudicots: a nearly complete familial analysis based on rbcL gene sequences. —
Kew Bull.
55: 257–309.
CrossRef
Google Scholar
D. E. Soltis
,
P. S. Soltis
,
M. W. Chase
,
M. E. Mort
,
D. C. Albach
,
M. Zanis
,
V. Avellanen
,
W. H. Hahn
,
S. B. Hoot
,
M. F. Fay
,
M. Axteil
,
S. M. Swensen
,
L. M. Prince
,
W. J. Kress
,
K. C. Nixon
&
J. S. Farris
2000: Angiosperm phylogeny inferred from 18S rDNA, rbcL and atoP sequences. —
Bot. J. Linn. Soc.
133: 381–461. Google Scholar
H. A. Stafford
1994: Anthocyanins and betalains: evolution of the mutually exclusive pathways. — Pl. Sci. 101: 91–98.
CrossRef
Google Scholar
D. L. Swofford
1998: PAUP*. Phylogenetic Analysis Using Parsimony (* and other methods). — Sunderland, Mass. Google Scholar
R. F. Thorne
1992: An updated phylogenetic classification of flowering plants. — Aliso 13: 365–389. Google Scholar
I. Urban
1885: Über den Blütenbau von Microtea. — Ber. Deutsch. Bot. Ges. 3: 324–332. Google Scholar
S. Wicke
&
D. Quandt
(
in press): Universal primers for the amplification of the plastid trnK/matK region in land plants. — Anales Jard. Bot. Madrid. Google Scholar
A. Worberg
,
D. Quandt
,
A. M. Barniske
,
C. Löhne
,
K. W. Hilu
,
T. Borsch
2007: Phylogeny of basal eudicots: insights from non-coding and rapidly evolving DNA. — Organisms Diversity Evol. 7: 55–77. CrossRef Google Scholar
A. Worberg
,
M. H. Alford
,
D. Quandt
&
T. Borsch
2009:
Huerteales sister to Brassicales plus Malvales, and newly circumscribed to include Dipentodon, Gerrardina, Huertea, Perrotetia and Tapiscia. —
Taxon
58: 468–478. Google Scholar

Willdenowia
Vol. 39 • No. 2
Jan 2010
Vol. 39 • No. 2
Jan 2010
angiosperm classification
eudicots
matK
molecular phylogeny
neotropical plant families
petD