Open Access
How to translate text using browser tools
21 March 2023 New analysis of the endemic vascular plants of Algeria, their diversity, distribution pattern and conservation status
Rachid Meddour, Ouahiba Sahar, Stephen Jury
Author Affiliations +
Abstract

In this study, we provide a new analysis on strict-endemic vascular plant taxa of Algeria and discuss their taxonomic diversity, geographical distribution and conservation status, based on a large literature review and our own field observations. Overall, 248 taxa (species, subspecies and varieties) are currently considered as Algerian endemics, from 41 families and 128 genera. They constitute about 6.3% of the total known flora of Algeria. The northern floristic regions are richer in endemic species: K1, K2, AS3, C1+C2 and O1 are by far the richest floristic regions for strict-endemic taxa, highlighting the importance of their mountain ranges. Most (59%) of the endemic plants have a narrow geographical distribution range (range-restricted). An overview of the IUCN conservation status of the Algerian endemics indicates that only 16 taxa (6.4%) are evaluated, out of which 5.6% of the taxa are threatened. Overall, 44% of the Algerian endemics are legally protected and 43% are included in the protected areas network. Finally, we focus on the shortfalls of knowledge that could orient further research on endemism data in Algeria. They concern taxonomic, chorological or conservation figures and above all the actual presence of the endemic species. It is, therefore, urgent to carry out targeted field expeditions in order to find and re-collect these species, most of which are strictly localized and have probably never been searched or found for 60 years to over a century.

Citation: Meddour R Sahar O & Jur S 2023: New anal sis of the endemic vascular lants of Al eria their diversit distribution pattern and conservation status. – Willdenowia 53: 25–43.

Version of record first published online on 21 March 2023 ahead of inclusion in April 2023 issue.

Introduction

The concept of endemism most used at present is referred to the restriction of the distribution of certain taxa to a distinct area (Laffan & Crisp 2003). Plant species are considered endemic to a country if they occur solely within its political borders (Gallagher & al. 2020). It is obvious that the endemics constitute the foremost group in terms of biodiversity and conservation of the flora (Millaku & al. 2016). Therefore, the number of endemic taxa in a country is one of the fundamental features of biodiversity (Hobohm 2014) and a first step for assessing the flora of that country (Treurnicht & al. 2017). A list of endemics to a country is of great relevance for conservation policy at both the national and local scales (Fois & al. 2022).

Algeria, which is an integral part of the biodiversity hotspot of the Mediterranean region (Médail & Quézel 1997), is recognized as an important centre of plant species diversity and endemism (Véla & Benhouhou 2007), facing a high level of human-induced threat (Quézel 2002). The vascular flora of Algeria is very diverse and offers an exceptional setting for the study of endemism and the distribution of its species.

The first attempt to describe the endemic vascular flora of Algeria was done by Quézel (1964). This author stated that the number of species endemic to N Algeria was estimated at 247, a rate of 8.6% of the N Algerian flora. According to Greuter (1991), Enríquez-Barroso & Gómez-Campo (1991) and Véla & Benhouhou (2007), Algeria has 320, 256 or 224 endemic taxa, respectively. According to the most recent data (Dobignard & Chatelain 2010–2013), the Algerian vascular flora includes 3951 native taxa (species and subspecies), with 290 Algerian endemic species (6.5%).

Accounts on diversity of endemics in Algeria seem to be numerous, but there are some discrepancies about the exact number of endemic species. Comparing numbers with information from previous literature is always difficult, because some references are based on the number of species only, while others also consider infraspecific taxa and include endemic and subendemic species or only strict-endemics (Dobignard & Chatelain 2010–2013). Otherwise, many subendemic taxa were formerly considered as strict-endemics to Algeria (Quézel & Santa 1962–1963), until their chorological status was changed according to new findings in neighbouring countries, specifically Morocco and Tunisia. The observed differences in these accounts are furthermore justified by the new contributions of knowledge on the Algerian flora and the consideration of taxa formerly overlooked or cryptic following taxonomic revisions (see, e.g., Romo & Boratyński 2010; Véla & al. 2013, 2016; Vicente & al. 2016, 2020). Statistics of this nature are complicated by ongoing taxonomic studies (Helme & Trinder-Smith 2006). After many recent findings regarding nomenclatural changes, mostly recombinations but also new taxa (Dobignard & Chatelain 2010–2013), and geographical distribution changes, Algeria does not have an accurate and complete inventory relating to the endemic vascular plant taxa. Therefore, an updated checklist of Algerian endemics, including how many and which taxa are endemic and where they are found, is currently needed.

The aims of this study are hence to provide a new analysis of the strict-endemic vascular taxa of Algeria, to analyse their diversity, to interpret their distribution patterns and phytogeography within the Algerian floristic regions and to summarize their currently known conservation status.

Material and methods

Study area

Algeria is the largest country in Africa, with a total land area of 2,381,741 km2. It is also the largest country bordering the Mediterranean Sea, with a coastline stretching along a length of 1355 km (Fig. 1). The Algerian territory is clearly divided into three geographical entities, the north or “Tell”, restricted to the coastal plains and adjacent Tellian Atlas mountains, the “Steppe” considered in the widest sense and encompassing the High plateaus and the Saharan Atlas (both belonging to the Mediterranean region), and the south or “Sahara” (part of the Saharo-Arabian region). Therefore, its flora belongs to the Holarctic floristic kingdom (Quézel 1978).

Algeria is one of the most biodiverse countries in North Africa because of its unique biogeography with a transition between tropical and temperate climates (Véla & Benhouhou 2007), given its geographical position at the edge of the Mediterranean Sea. The interaction of the Mediterranean climate with the relief of the Atlas results in a strong environmental gradient, creating a north-south decrease in rainfall and an increase in dry season length, which determines huge changes in the structure and floristic composition of various types of vegetation linked to different ecological and bioclimatic zones (Meddour 2012). Therefore, considerable habitat diversity occurs throughout Algeria, explaining its high level of endemism and high plant diversity, with the presence of two major regional biodiversity hotspots, the “Kabylias-Numidia-Kroumiria” and the “Baetic-Rifean complex” (Véla & Benhouhou 2007).

Fig. 1.

Topographic map of Algeria and neighbouring countries (source:  https://fr.wikipedia.org/wiki/Algérie#/media/Fichier:Algeria_Topography.png).

img-z2-4_25.jpg

Algeria has an important protected areas framework, encompassing ten national parks, two cultural parks and two natural reserves, oriented toward the conservation of habitats and their biodiversity (Benhouhou & al. 2018).

Data collection and analysis

In this work, we examined all available literature on the vascular flora of Algeria, and the main taxonomic web sources, to compile an updated checklist of strict-endemics to Algeria (or Algerian endemics) that occur only within the political borders of the country. The bibliographic research started with the Index synonymique de la flore d'Afrique du Nord (Dobignard & Chatelain 2010–2013), where the Algerian endemics are labelled Alg*, which served as a priority source to select them. We matched these endemic plants with data available in the key databases, such as the African Plant Database (APD 2022) and the online eflora du Maghreb (eflora Maghreb 2022), which specify the endemic status of all plants present in Algeria. We cross-checked the information with data from the Euro+Med PlantBase (Euro+Med 2022) and the Plants of the Word Online database (POWO 2022), which allow confirmation of endemism, in particular the exclusive presence in Algeria of the taxa selected. We have only retained the taxa (species, subspecies and varieties) considered by all the sources mentioned above as strict-endemics. Plants no longer considered as endemic to Algeria, for taxonomic or chorological reasons (Algerian-Tunisian, Algerian-Moroccan endemics or other subendemics), were therefore excluded (Table 1). Likewise, hybrid species exclusive to Algeria are not recorded in the present analysis. A refined dataset was created at the end of this sorting.

The taxonomic nomenclature of taxa (with their authorities) was revised, and accepted names of species and infraspecific taxa follows the African Plant Database (APD 2022), except in the case of Cyclamen repandum var. baborense Batt. ex Debussche & Quézel, where the name has been updated according to POWO (2022). For angiosperms, plant family circumscription follows APG IV (2016).

The distribution of endemic taxa in the phytogeographical subsectors (hereafter “floristic regions”) of Algeria was mainly documented according to the existing literature (Battandier & Trabut 1888–1890, 1895, 1905; Maire 1952–1987; Quézel & Santa 1962–1963; Ozenda 2004), herbarium specimen label data (cf. eflora Maghreb 2022) and our own field surveys. In Algeria, 20 floristic regions were defined based on the distribution of the endemic plants in relation to the local climates, geology and geomorphology, and according to different vegetation types (Quézel & Santa 1962–1963; Meddour 2012). Among these floristic regions, 15 northern ones are under Mediterranean influence, while five others are entirely Saharan (Fig. 2).

We made the deliberate choice not to use the rarity index as established by Quézel & Santa (1962–1963), because it is very outdated and far from any modern significance. One of the three attributes defining rarity is the size of the species range (large vs small) (Rabinowitz 1981). In this sense, the distribution analysis of endemic flora will allow us to identify the “range-restricted” taxa, i.e. present in only one floristic region within Algeria. In the same way, Fennane & Ibn Tattou (1999) considered the taxa present in one (or two) phytogeographic divisions of Morocco as “rare”.

With regard to the conservation status of the Algerian endemics, there is yet no national Red List established in line with the IUCN criteria. The data derived from IUCN database (IUCN 2022) are used to determine what proportion of the endemic plant species have an assessment of their extinction risk, although this status has not been assessed for all taxa, nor specifically for Algeria. The assessed endemic plants have been classified at global geographical scope either into a threat category, according to the new categories (IUCN 2012), as Critically Endangered (CR), Endangered (EN) or Vulnerable (VU), or into the other categories as Near Threatened (NT), Data Deficient (DD) or Least Concern (LC).

Algerian endemic taxa protected by the national legislation in Algeria are compiled according to the List of non-cultivated plant species protected throughout Algeria, set by Executive Decree no. 12-03 of 4 January 2012 (JORA 2012), after carefully checking the nomenclatural synonymy issues.

Otherwise, we highlight endemic taxa that are already benefitting from protected area status in Algeria, such as national parks (NP), natural reserves (NR) and cultural parks (CP), formerly classified as national parks until 2011. Algerian Cultural Parks (CPs) are recognized as “Other Effective Area-Based Conservation Measures” (OECMs), which offer an excellent opportunity to acknowledge effective long-term biodiversity conservation that takes place outside currently designated protected areas (IUCN 2020).

Results

Diversity and taxonomic analysis

The Algerian endemic vascular flora includes 248 taxa (distributed among 174 species, 72 subspecies and 2 varieties) (see Appendix 1), representing almost 6.3% of the native flora of Algeria. They belong to a large number of 128 genera and 41 families.

The distribution of endemic species in Algeria is uneven according to the 41 families (Fig. 3). Twenty families, containing three or more endemic taxa each, collectively contribute 90% of the endemic taxa in Algeria: Asteraceae (20% of endemics), Fabaceae (10%), Caryophyllaceae (9%) and Lamiaceae (8%) are the best-represented families, followed by Brassicaceae (7%), Papaveraceae (7%) and Poaceae (6%). Then, four families include two taxa each, and the remaining 17 families are represented by only one endemic taxon each. Otherwise, there is a weak correspondence between species-rich plant families and endemism. Some larger families contribute more endemic species to the flora of Algeria, while others contribute few endemics, relative to their dominance in the flora. The case of the Poaceae, which is the second most species-rich plant family, illustrates this fact; it occupies only the seventh position in terms of number of endemics. Besides, certain families are significantly over-represented, such as Papaveraceae, contributing a high proportion of endemics relative to their contribution to the overall flora (Fig. 3).

Endemism appears to be particularly dispersed within the genera present in Algeria (Table 2). Indeed, out of 128 genera containing endemic taxa in Algeria, only 15 of them have four or more taxa each, 11 genera (Anthemis L., Centaurea L., Crepis L., Festuca L., Fumaria L., Genista L., Ononis L., Rupicapnos Pomel, Salsola L., Silene L. and Teucrium L.) have five endemic taxa or more and only two of these genera have more than ten (Rupicapnos and Silene). The genus Silene is by far the richest in the Algerian endemic flora, with 12 strict-endemic species. Algeria is therefore identified as a centre of endemism for these two genera. The greater part of the genera (103 genera, 81%) are represented by only one or two endemic taxa each. In addition, generic endemism is shown in Algeria by the presence of two exclusively Algerian genera, namely Agropyropsis (Batt. & Trab.) A. Camus (Poaceae) and Otocarpus Durieu (Brassicaceae).

Table 1.

List of taxa previously considered as Algerian endemics (Dobignard & Chatelain 2010–2013) but now no longer considered as Algerian endemics, with reasons for their exclusion.

img-z4-2_25.gif

Continued

img-z5-1_25.gif

Location of endemic species according to the floristic regions

There is considerable variation in the number of endemics within the floristic regions (from zero to 63 taxa) (Fig. 4). Out of the 20 floristic regions in Algeria, ten regions harbour at least 20 endemic taxa and five regions (K2, K1, AS3, C1+C2, O1) include more than 30 endemics each. The highest endemism richness (number of endemic taxa per floristic region) is recorded in the Small Kabylia (K2), with 63 endemic taxa (25% of all endemics), followed by Great Kabylia (K1), with 49 endemic taxa (20%), E Saharan Atlas, including the Aurès massif (AS3: 42 taxa, 17%), the Hills of Constantine and Bibans-Hodna-Belezma mountains (C1+C2: 40 endemic taxa, 16%) and the Oran coast (O1: 39 taxa, 16%). The outstanding richness of these floristic regions can be explained by the presence of the highest peaks among mountain ranges in the country (K1: Djurdjura, 2308 m; K2: Babors, 2004 m; AS3: Aurès, 2328 m; C1+C2: Belezma, 2178 m) in direct contact with the influence of the Mediterranean Sea. In addition, the C Sahara (SC) is worth mentioning for its endemic richness: this mountainous area in the Algerian Sahara (Ahaggar, 2918 m; Tassili n'Ajjer) hosts 18 strict-endemics (7%).

Altogether, a high number of Algerian endemics (147 or 59%) are range-restricted, i.e. narrowly localized and known from only one floristic region. These endemics are observed especially on the hills of Oran (O1: 24 taxa), the forests of Small Kabylia (K2: 20), the summits of the C Sahara (SC: 15), the Aurès massif (AS3: 12) and the mountains of the W Tell (O3: 11). In all these floristic regions, a large portion of the endemic flora is constituted of these range-restricted taxa, which greatly individualize them phytogeographically.

Conservation status and protection of endemics in Algeria

Concerning their conservation status, 90 Algerian endemic taxa were previously included in the 1997 IUCN Red List of threatened species and classified as follows: 24 taxa Endangered (E), 16 Vulnerable (V), 45 Rare (R) and 5 Indeterminate (I), according to the pre-2001 IUCN categories (cf. Walter & Gillett 1998).

Since the 2001 categories and criteria version, the IUCN Red List has made very few new evaluations for Algerian plant species. Therefore, the globally assessed endemic flora of Algeria is limited to 16 endemic taxa (6.4%), out of which 14 are threatened (5.6%) and listed as follows: five taxa Critically Endangered (CR), three Endangered (EN), two Vulnerable (VU), four Data Deficient (DD) and two Least Concern (LC) (Table 3).

Fig. 2.

Floristic regions of Algeria (Quézel & Santa 1962–1963, modified by Chatelain & Meddour in Meddour & al. 2021). Brown lines delineate the Saharan area. Floristic regions are encoded as follows. – Littoral and mountains of Tell: O1: hills of Oran coast; O2: plains of Oran hinterland including La Macta; O3: mountains of Tlemcen and other mountains of Oran Tell; A1: hills and coast near Algiers including Mitidja; A2: mountains of Algiers Tell; K1: Great Kabylia including Djurdjura; K2: Small Kabylia including Babors; K3: Numidia; C1: hills of Constantine Tell; C2: mountains of Bibans/Hodna/Belezma axis. – High plateaus: H1: W high plains (from S Oran to S Algiers); H2: E high plains (S Constantine); H3: Hodna plain (N Saharan enclave). – Saharan Atlas: AS1: W Saharan Atlas (Ain Sefra region); AS2: C Saharan Atlas (Djelfa region); AS3: Aurès and E Saharan Atlas (Tébessa region). – Sahara: SS1: NW Sahara; SS2: NE Sahara; SO: W Sahara; SC: C Sahara including Ahaggar and Tassili n'Ajjer; SM: S Sahara.

img-z6-1_25.jpg

Overall, the law protects only 110 endemic taxa (44% of the total), which are included in the List of non-cultivated plant species protected throughout Algeria. The remaining endemics are not yet legally protected. We recommend inclusion of the range-restricted endemic taxa in the national list of protected plants, in particular the threatened ones (noted by an asterisk in Table 3).

Of the 248 endemic taxa, 107 (c. 43%) are already benefitting from protected area status. Indeed, the protected areas network overlaps totally or partially the distribution areas of these endemics, especially the National Parks situated in the Kabylias-Numidia area that play a vital role (Djurdjura, Babor-Tababort, Taza, El Kala and Gouraya). These protected areas harbour a flora with a particularly high proportion of Algerian endemics (Fig. 5): Djurdjura National Park (36 taxa), Babor-Tababort NP (30), Taza NP (14), El Kala NP (13) and Gouraya NP (12); and also Ahaggar CP (12) in the C Sahara. However, endemic species occur in Algeria everywhere, so there are many such species (141 taxa) outside the existing protected areas network.

Altogether, 167 taxa (67%) are protected in Algeria by being on the national Red List and/or by overlapping partially or completely the protected areas network. Therefore, 81 taxa are without any protection, from which 45 are range-restricted and deserve urgent protection, at least national Red-Listing, e.g. Silene auriculifolia Pomel (see Table 3 and Appendix 1).

Discussion

Taxonomic diversity

Among the Mediterranean countries, Algeria, in spite of being a desertic country over 84% of its territory, occupies the seventh position in terms of richness in number of plant taxa (Quézel 1995) and the second position in North Africa, with 3951 native taxa (Dobignard & Chatelain 2010–2013). With 248 endemic taxa (6.3% of the overall flora), strict-endemism in Algeria is slightly higher than in other North African arid countries, such as Libya (6%), Tunisia (2.6%) and Egypt (2.3%), but substantially lower than in Morocco (18%), which is recognized as having the highest plant diversity in North Africa (Dobignard & Chatelain 2010–2013; Abdelaal & al. 2018). Likewise, in comparison with some European countries characterized by a Mediterranean climate, diverse topography and islands, such as Italy (13.4%) and Greece (15.6%) (cf. Rankou & al. 2013), the number of endemics in Algeria is very much lower. Moreover, according to Aedo & al. (2013), endemism reached 21% in the Spanish flora (the Canary Archipelago excluded).

The preponderance of Asteraceae (20%), followed by Fabaceae, Caryophyllaceae, Lamiaceae and Brassicaceae, which support a speciose number of endemic taxa, is remarkable in this endemic flora. This is not surprising, because families with the largest number of endemic plants are the largest families of Algeria (Quézel 1964, 1978; Dobignard & Chatelain 2010–2013). This is likewise the case in Morocco (Fennane & Rejdali 2019) and the overall Mediterranean Maghreb (Quézel 2002). Nevertheless, the Poaceae, which is the second largest family, falls unexpectedly outside the top ten families for endemics. It is significant to note that, far from Algeria, Darbyshire & al. (2019) made the same observation about the endemic flora of Mozambique.

Table 2.

Ranking of larger genera that contribute four or more endemic taxa to Algeria. nET: number of endemic taxa; %ET: % of endemic taxa (n = 248).

img-z7-6_25.gif

The Genera Anthemis, Centaurea, Crepis, Festuca, Fumaria, Genista, Ononis, Rupicapnos, Salsola, Silene and Teucrium are the richest in endemic species (at least four endemic species per genus). This is also the case in Morocco (Rankou & al. 2013) and the whole of North Africa (Quézel 1978, 2002), except for the genera Rupicapnos and Salsola.

The case of the critical genus Rupicapnos is probably the most obvious (Quézel 1978), because it has the highest endemic diversity (11 taxa) in Algeria. Actually, species concepts and the number of species recognized in Rupicapnos vary considerably between authors, and this genus has been subject of very different taxonomic treatments. Pugsley (1919) already recognized some 30 species in North Africa, nearly one per locality, while Maire (1952–1987) and Quézel & Santa (1962–1963) kept only three collective species in the genus. Then, following Lidén (1986), Dobignard & Chatelain (2010–2013) retained for Algeria 17 taxa (seven species and ten subspecies), including 11 endemics, against only five taxa (including only one endemic) in Morocco. Therefore, this Ibero-Maghrebian (Spain, North Africa) genus is most developed in Algeria, its centre of diversity (Battandier 1922a).

Widely distributed in arid and semi-arid regions of the world (ElNaggar & al. 2022), the genus Salsola is represented in Algeria by 11 species and varieties (Quézel & Santa 1962–1963) to 22 species and subspecies (Dobignard & Chatelain 2010–2013). The number of endemics has in the meantime increased from one Algerian endemic (Salsola cruciata L. Chevall. ex Batt.) to seven strict-endemic species, following the work of Botschantzev (1975). However, the genus Salsola, due to the physical similarity between many species, is regarded as exceedingly difficult and is frequently overlooked (Murshid & al. 2022). Indeed, these Algerian endemic taxa have remained cryptic and unknown, as they have never been cited afterward, notably by Le Houérou (1995) in the steppe region, nor by Ozenda (2004) in the Algerian Sahara. They are to be actively sought out in the field and require a taxonomic revision. Otherwise, generic endemism is manifested in Algeria by the presence of two exclusively Algerian genera, namely Agropyropsis (Poaceae) and Otocarpus (Brassicaceae), both monospecific and having a restricted distribution (Quézel 1964, 1978).

Distribution patterns, chorology and regional hotspots

The distribution of endemic plant taxa in Algeria is not random, and not all areas are equally rich in endemic species, as previously shown by Quézel (1964). Within the floristic regions of Algeria, the Oran sector and Kabylia-Numidia sector (Quézel & Santa 1962–1963) are indicated as the most important centres of endemism, a well-known fact commented on previously by Quézel (1964), Enríquez-Barroso & Gómez-Campo (1991) and Véla & Benhouhou (2007). According to these authors, the most remarkable floristic regions for endemism are the Oran coast (O1), followed by the Small Kabylia (K2) and the Great Kabylia (K1). However, when considering the strict-endemism, the floristic regions with the highest number of endemics are the same, but their ranking is different in the two cases. We have recorded important centres of endemism in Algeria, in this rank: K2 including Babors (25%), K1 including Djurdjura (20%), AS3 including Aurès (17%), C1+C2 including the Belezma and Hodna chains (16%) and lastly the Oran coast O1 (c. 16%). The latter is especially rich in Algerian-Moroccan endemics, as shown by Medjahdi & al. (2009).

Fig. 3.

Plant families of Algeria, representing their contribution to the overall flora (derived from Dobignard & Chatelain 2010–2013), as well as their contribution of endemics.

img-z8-1_25.jpg

The high-altitude flora of the Atlas Mountains of Algeria is recognized to be rich in endemics, including orophytes (cf. Quézel 1964, 1957, 1978), as well as in Morocco (Neffati & al. 1999; Rankou & al. 2013). This high richness in endemics is probably linked to high rainfall and short dry season incidence in these areas (Fennane & Ibn Tattou 1999). It is likewise the case for the high mountains of the Algerian C Sahara (SC: Ahaggar, Tassili n'Ajjer) (Ozenda 2004), which harbour a noteworthy rate (7%) in a desertic environment. These mountains (highest peak: Mount Tahat, 2908 m, Ahaggar) are cooler and wetter than other S Saharan regions of the Maghreb (Walas & Taib 2022). The higher number of endemic plant taxa in mountainous (as well as coastal) regions is a common pattern observed in the Mediterranean Basin (Verlaque & al. 1997; Abdelaal & al. 2020; Walas & Taib 2022) and other mountainous areas, such as Iran (Noroozi & al. 2018).

The analysis of distribution patterns of richness in endemic taxa in Algeria supported that the areas richest in endemic taxa match well the regional hotspots (cf. Médail & Quézel 1997; Véla & Benhouhou 2007) and putative refugia (Médail & Diadéma 2009) already described in Algeria. These areas are of high priority to preserve plant diversity (Myers & al. 2000) and to promote the sustainable management of these critical sites and their species (Darbyshire & al. 2019).

Furthermore, this analysis allows the most narrowly distributed species to be highlighted: the 147 range-restricted endemic taxa (59%). They are sometimes sporadically distributed, form small populations in the wild (Carbutt & Edwards 2006; Libiad & al. 2020) and in some cases are known from a single population of few individuals (e.g. Atractylis caerulea Batt. and Tricholemma breviaristatum (Barratte) Röser). In the Mediterranean region, Greuter (1994) similarly demonstrated that a remarkable number of narrow endemics reflects plant species presenting small mean distributional ranges. Their conservation needs to be prioritized (Laffan & Crisp 2003).

Conservation status, redlisting and protected areas

With regard to their conservation status, new evaluations by IUCN (2022) in Algeria are very scarce, and the globally assessed endemic flora of Algeria is limited to only 16 endemic taxa (6.4%), of which 14 are threatened. Therefore, 93.6% of Algerian endemic taxa are as yet Not Evaluated (NE) by IUCN (2022). According to Gallagher & al. (2020), 67% of country-based endemic species do not have a completed threat assessment, particularly in North Africa. Effectively, the task of assessing the conservation status of the endemics is a difficult one, because insufficient data are available to evaluate many endemic species, such as estimates of population size, distribution range, number of locations, etc. (Carbutt & Edwards 2006). This is especially the case in Algeria.

Fig. 4.

Distribution of Algerian endemic taxa (range-restricted and shared) across floristic regions. Codes for floristic regions are explained in Fig. 2.

img-z9-1_25.jpg

Fortunately, relevant literature sources provide additional information on the conservation status of four other endemic taxa: (1) Salvia balansae de Noé is suggested as Vulnerable, according to criteria C1+2a(ii) (Mostari & al. 2016); (2) Onopordum algeriense (Munby) Pomel is suggested as Critically endangered (IUCN criteria are not specified) (Djelid & al. 2020); (3) Erica numidica (Maire) Romo & Borat. is proposed as Critically Endangered fulfilling two criteria A and D (Hamel & al. 2021), and (4) Adenocarpus faurei Maire, one of the rarest Algerian endemics, is considered as Extinct (Miara & al. 2018b).

The list of protected plants in Algeria (JORA 2012) includes 452 taxa. However, strict-endemic plants are underrepresented in this list, because it contains only 110 endemic taxa (44% of the endemic flora). Therefore, the national legislation does not protect a great number (138) of strict-endemic taxa. Additionally, 107 taxa (43%) are already benefitting from indirect protection status, because they are by chance included in the national network of protected areas. In order to complete the National Red List of plants, we must add all the range-restricted endemic taxa, especially those that are not present in protected areas (46 taxa), mainly the threatened ones (see Table 3 and Appendix 1).

On the other hand, many areas, such as the Aurès massif and the Oran coast (except the Habibas Islands and Lindlès Cape, recently established as natural marine reserves), do not have any designated protection, despite hosting a great number of endemic taxa (14 and 27, respectively). Both these regions are of high priority for establishing as additional protected areas. However, the Oran coastal region has undergone much greater anthropization, compared to Aurès, where mountain habitats are more preserved. It therefore requires priority conservation action.

Shortfalls of knowledge

Studies relating to the inventory of the flora endemic to Algeria are very rare. Some recent observations, dealing with endemics in the broad sense, have been published for the Oran coast, Ksour mountains, Saida mountains, Tiaret region, Edough, Souk Ahras and Skikda (see Hamel & al. 2013; Miara & al. 2017, 2018a; Mansouri & al. 2018; Djebbouri & Terras 2019; Gordo & Hadjadj-Aoul 2019; Aouadj & al. 2020; Sakhraoui & al. 2020; Touati & al. 2021).

Even so, knowledge on Algerian endemic plants is not well documented and there is insignificant data on their threat status, distribution or even their existence (Miara & al. 2018a). Algerian endemic plants are insufficiently known, and most of them have never been observed since their discovery 60 years to over a century ago. For others, the type material has not yet been found in a herbarium. In particular, taxa known only from the type locality (or the type specimen) are to be underlined:

Artemisia alba subsp. kabylica (Chabert) Greuter has not been re-collected since the type was gathered at Ait Bou Youcef (Kabylia) in 1888 (Ouyahia 1989).

Asyneuma rigidum subsp. aurasiacum (Batt. & Trab.) Damboldt was gathered in Sgag (Aurès) in 1892 but was not found again (Quézel 1953) and has never been recollected since.

Fig. 5.

Number of Algerian endemic taxa occurring in the protected areas network.

img-z10-1_25.jpg

Atractylis caerulea is known from only three collections in 1919 at the south of Sersou (Quézel & Santa 1962–1963) and has not been re-collected since.

Erodium guinochetianum Guitt. is known from only one location (Tiaret) and has never been re-collected since 1963 (Guittonneau 2017).

Legousia juliani (Batt.) Briq., has not been re-collected since the type was gathered at Djebel Ouahch (Constantine) in 1889 (Wahlsteen & Tyler 2019).

Tricholemma breviaristatum was collected only once in Ouled Sahari (1882) and has never been re-collected since (Gabriel & al. 2020).

Vulpia obtusa Trab. has never been re-collected since its description in 1902. Little is known about this species from Lake Oubeira (El Kala), and Maire (1952–1987) had seen no material, despite searching in the Trabut herbarium (Stace 2022).

They are all obviously in danger of extinction or even already extinct, as is the case with Adenocarpus faurei (Miara & al. 2018b). Several other species may be extinct in areas that are not protected in Algeria.

Faurel (1959), Mathez & al. (1985) and Meddour (1988) had already drawn attention to many rare and endangered endemic species, which have still not been found again up to now, e.g. Agropyropsis lolium (Balansa ex Coss. & Durieu) A. Camus, Noccaea atlantica (Batt.) Al-Shehbaz, Ononis megalostachys Munby, Sideritis maura de Noé, Sorghum annuum (Trab.) Maire and Verbascum pinnatisectum (Batt.) Benedí. Currently, some authors (Miara & al. 2017; Mansouri & al. 2018; Mostari & al. 2020; Sakhraoui & al. 2020; Bouchibane & al. 2021; Meddour & Sahar 2021) reported that they were not lucky enough to find certain endemics. In NW Algeria, this is the case for Adenocarpus umbellatus Batt., Anacyclus linearilobus Boiss. & Reut., Bellevalia pomelii Maire, Centaurea obtusiloba Batt., Crepis arenaria subsp. suberostris (Batt.) Greuter, Mecomischus pedunculatus (Coss. & Durieu) Oberpr. & Greuter, Najas marina subsp. arsenariensis (Maire) Triest, Pulicaria filaginoides Pomel, Silene ghiarensis Batt., Teucrium santae Quézel & Simonn. ex Greuter & Burdet and Trisetaria nitida (Desf.) Maire. In NE Algeria, this is the case for Bunium chabertii (Batt.) Batt., Pedicularis numidica Pomel, Romulea penzigii Bég., Silene colorata subsp. amphorina (Pomel) Batt. and S. reverchonii Batt. Nevertheless, it would not be reasonable to declare all these taxa extinct without having searched for them in a targeted way.

Some of these allegedly extinct endemics (Faurel 1959; Mathez & al. 1985), not seen since after their first description in Algeria, have actually been rediscovered in their loci classici or new sites. We have to mention Allium seirotrichum Ducell. & Maire (temporarily considered as a synonym of A. trichocnemis J. Gay) (Khedim & al. 2016), Anthemis maritima subsp. bolosii Benedí & Molero (Sakhraoui & al. 2021), Crepis arenaria (Pomel) Pomel subsp. arenaria (Gordo & al. 2021), Cyclamen repandum var. baborense (Meddour, pers. obs., 30 Mar 2022,  https://www.inaturalist.org/observations/111505790), Digitalis atlantica Pomel (Chelli-Tabti & al. 2020), Onopordum algeriense (Djelid & al. 2020), Otocarpus virgatus Durieu (Miara & al. 2014) and Pulicaria vulgaris subsp. pomeliana (Faure & Maire) E. Gamal-Eldin (Babali & Bouazza 2016).

Table 3.

Classification of 16 evaluated taxa endemic to Algeria according to IUCN threat categories (IUCN 2022). Red List categories: CR: Critically Endangered; EN: Endangered; VU: Vulnerable; DD: Data Deficient; LC: Least Concern. An asterisk (*) indicates plants that are not protected by law in Algeria. Note: 232 other endemic taxa are not evaluated by the IUCN (2022).

img-z11-2_25.gif

As a result, the data shortfalls on endemic plants do not only concern chorological, biological or taxonomic data, but above all the real presence of these species. It is therefore urgent to carry out targeted field expeditions, on the scale of the entire national territory, in order to find and re-collect these taxa, most of which are strictly localized, either in their classic localities or in new locations.

Conclusion

The level of plant endemism in Algeria is high, and it is treated here within a conservation framework to draw attention to the local and global significance of its biodiversity. We collected data from literature including Floras, herbaria and our expertise to compile the most comprehensive dataset on endemic vascular plants to Algeria. We have tried to be exhaustive, but our intention is to maintain this working list and publish additions as taxonomic revisions over time occur. This will require the periodic updating of our checklist. There is likewise a need to update plant statuses (distribution, biology, threats), in particular those threatened and range-restricted endemics that occupy a place of first importance in conservation programs. This study not only provides a picture of the endemic flora to Algeria, but it also identifies shortfalls in knowledge on which future research efforts could focus. In this case, the search for taxa that have not been seen for a very long time is regarded as an urgent task.

Author contributions

RM contributed to the research conception, acquisition of data, analysis and interpretation, prepared the manuscript and reviewed the final draft. OS contributed to the preparation of the list of endemic taxa and reviewed the final draft. SJ contributed to the improvement of the English language, provided additions and comments and revised the final draft.

Acknowledgements

The authors would like to thank Prof. M. B. Crespo (Universidad de Alicante) and two anonymous reviewers for their critical reviews of the manuscript and, together with the editor, for their valuable comments and suggestions.

© 2023 The Authors ·

This open-access article is distributed under the  CC BY 4.0 licence

References

1.

Abdelaal M., Fois M., Fenu G. & Bacchetta G. 2018: Critical checklist of the endemic vascular plants of Egypt. – Phytotaxa 360: 19–34.  https://doi.org/10.11646/phytotaxa.360.1.2 Google Scholar

2.

Abdelaal M., Fois M., Fenu G. & Bacchetta G. 2020: Biogeographical characterisation of Egypt based on environmental features and endemic vascular plants distribution. – Appl. Geogr. 119(a102208).  https://doi.org/10.1016/j.apgeog.2020.102208 Google Scholar

3.

Aedo C., Medina L. & Fernández-Albert M. 2013: Species richness and endemicity in the Spanish vascular flora. – Nordic J. Bot. 31: 478–488.  https://doi.org/10.1111/j.1756-1051.2012.00009.x Google Scholar

4.

Aouadj S. A., Nasrallah Y., Hasnaoui O. & Khatir H. 2020: La flore rare, endémique et menacée des Monts de Saida (Algérie). – Agrobiologia 10: 1986–1998. Google Scholar

5.

APD [African Plant Database] 2022: African Plant Database (version 4.0.0). Genève: Conservatoire et Jardin botaniques de la ville de Genève. Pretoria: South African National Biodiversity Institute. – Published at https://africanplantdatabase.ch/[accessed Jul 2022]. Google Scholar

6.

APG IV 2016: An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. – Bot. J. Linn. Soc. 181: 1–20.  https://doi.org/10.1111/boj.12385 Google Scholar

7.

Babali B. & Bouazza M. 2016: Redécouverte de Pulicaria vulgaris subsp. pomeliana (Faure et Maire) E. Gamal-Eldin (Asteraceae) dans la région de Tlemcen (Algérie occidentale). – Bull. Soc. Linn. Provence 67: 45–52. Google Scholar

8.

Battandier J. A. 1895: Note sur quelques plantes récoltées en Algérie et probablement adventices. – Bull. Soc. Bot. France 42: 289–296.  https://doi.org/10.1080/00378941.1895.10830598 Google Scholar

9.

Battandier J. A. 1922: Un groupe de plantes difficile à classer, les Rupicapnos Pomel. – Bull. Soc. Hist. Nat. Afr. N. 13: 239–242. Google Scholar

10.

Battandier J. A. & Trabut L. 1888–1890: Flore de l'Algérie. Ancienne Flore d'Alger transformée. Contenant la description de toutes les plantes signalées jusqu'à ce jour comme spontanées en Algérie 1. Dicotylédones. – Alger: A. Jourdan, Paris: J.-B. Baillière. Google Scholar

11.

Battandier J. A. & Trabut L. 1895: Flore de l'Algérie: Contenant la description de toutes les plantes signalées jusqu'à ce jour comme spontanées en Algérie 2. Monocotylédones. – Alger: A. Jourdan, Paris: J.-B. Baillière. Google Scholar

12.

Battandier J. A. & Trabut L. 1905 [“1902”]: Flore analytique et synoptique de l'Algérie et de la Tunisie. – Alger: Vve Giralt. Google Scholar

13.

Benhouhou S., Yahi N. & Véla E. 2018: Status of threatened flora: Algeria. – Pp. 25–27 in: Valderrábano M., Gil T., Heywood V. & de Montmollin B. (ed.), Conserving wild plants in the south and east Mediterranean region. – Malaga: IUCN, Centre for Mediterranean Cooperation. Google Scholar

14.

Botschantzev V. P. 1975: Hoвыe виды Salsola L. New species of Salsola L. – Bot. Zhurn. (Moscow & Leningrad) 60: 498–505.  http://en.arch.botjournal.ru/?t=issues&id=19750404  Google Scholar

15.

Bouchibane M., Zemouri M. & Toumi R. 2021: Contribution à l'étude de la végétation de certains massifs montagneux de la Kabylie des Babors (Nord-Est algérien). – Bull. Soc. Roy. Sci. Liège 91: 317–360.  https://doi.org/10.25518/0037-9565.10696 Google Scholar

16.

Carbutt C. & Edwards T. J. 2006: The endemic and near-endemic angiosperms of the Drakensberg Alpine Centre. – S. African J. Bot. 72: 105–132.  https://doi.org/10.1016/j.sajb.2005.06.001 Google Scholar

17.

Carvalho G. & Gillet H. 1960: Catalogue raisonné et commenté des plantes de l'Ennedi (suite). – J. Agr. Trop. Bot. Appl. 7: 193–240.  https://doi.org/10.3406/jatba.1960.2605 Google Scholar

18.

Chelli-Tabti D., Markhouf S., Derradji S., Hamitouche S., Bouchareb A. & Bougaham A. F. 2020: New data on the distribution area of the Atlas foxglove Digitalis atlantica (Pomel). – Ecol. Medit. 46: 41–47.  https://doi.org/10.3406/ecmed.2020.2097 Google Scholar

19.

Darbyshire I., Timberlake J., Osborne J., Rokni S., Mat-imele H., Langa C., Datizua C., de Sousa C., Alves T., Massingue A., Hadj-Hammou J., Dhanda S., Shah T. & Wursten B. 2019: The endemic plants of Mozambique: diversity and conservation status. – PhytoKeys 136: 45–96.  https://doi.org/10.3897/phytokeys.136.39020 Google Scholar

20.

Djebbouri M. & Terras M. 2019: Floristic diversity with particular reference to endemic, rare or endangered flora in forest formations of Saïda (Algeria). – Int. J. Environ. Stud. 76: 990–1003.  https://doi.org/10.1080/00207233.2019.1620541 Google Scholar

21.

Djelid S. A., Calvão T. & Bensaid S. 2020: Redécouverte et écologie d'Onopordum algeriense (Munby) Pomel = Carduus algeriensis Munby, endémique stricte en voie d'extinction du secteur algérois. – Acta Bot. Malacit. 45: 117–125.  https://doi.org/10.24310/abm.v45i.5805 Google Scholar

22.

Dobignard A. & Chatelain C. 2010–2013: Index synonymique et bibliographique de la Flore d'Afrique du Nord 1–5. – Genève: Conservatoire et Jardin botaniques de la Ville de Genève. Google Scholar

23.

Domina & al. 2015: Taxonomy and conservation in higher plants and bryophytes in the Mediterranean area. – Biodivers. J. 6: 197–204. Google Scholar

24.

eflora Maghreb 2022: eflora du Maghreb. Genève: Conservatoire et Jardin botaniques de la ville de Genève. – Published at https://efloramaghreb.org/[accessed Jul 2022]. Google Scholar

25.

ElNaggar M. H., Eldehna W. M., Abourehab M. A. S. & Abdel Bar F. M. 2022: The old world Salsola as a source of valuable secondary metabolites endowed with diverse pharmacological activities: a review. – J. Enzyme Inhib. Med. Chem. 37: 2036–2062.  https://doi.org/10.1080/14756366.2022.2102005 Google Scholar

26.

Enríquez-Barroso A. & Gómez-Campo C. 1991: Les plantes endémiques de l'Afrique du Nord-Ouest: Algérie, Maroc et Tunisie. – Bot. Chron. (Patras) 10: 517–520. Google Scholar

27.

Euro+Med 2022: Euro+Med PlantBase – the information resource for Euro-Mediterranean plant diversity. – Published at https://europlusmed.org/[accessed Jul 2022]. Google Scholar

28.

Faurel L. 1959: Plantes rares et menacées d'Algérie. – Terre & Vie, Suppl. 1959: 140–155.  https://doi.org/10.3406/revec.1959.5222 Google Scholar

29.

Fennane M. & Ibn Tattou M. 1999: Observations sur la flore vasculaire endémique, rare ou menacée du Maroc. – Fl. Medit. 9: 113–124. Google Scholar

30.

Fennane M. & Rejdali M. 2019: Moroccan vascular plant Red Data Book: a basic tool for plant conservation. – Bocconea 28: 273–284.  https://doi.org/10.7320/Bocc28.273 Google Scholar

31.

Fois M., Farris E., Calvia G., Campus G., Fenu G., Porceddu M. & Bacchetta G. 2022: The endemic vascular flora of Sardinia: a dynamic checklist with an overview of biogeography and conservation status. – Plants 11(601).  https://doi.org/10.3390/plants11050601 Google Scholar

32.

Gabriel J., Tkach N. & Röser M. 2020: Recovery of the type specimen of Avena breviaristata, an endemic Algerian grass species collected only once (1882): morphology, taxonomy and botanical history. – Taxon 69: 142–152.  https://doi.org/10.1002/tax.12187 Google Scholar

33.

Gallagher R. V., Allen S., Rivers M. C., Allen A. P., Butt N., Keith D., Auld T. D., Enquist B. J., Wright I. J., Possingham H. P., Espinosa-Ruiz S., Dimitrova N., Mifsud J. C. & Adams V. M. 2020: Global shortfalls in extinction risk assessments for endemic flora. – bioRxiv.  https://doi.org/10.1101/2020.03.12.984559 Google Scholar

34.

Gordo B. & Hadjadj-Aoul S. 2019: L'endémisme floristique algéro-marocain dans les monts des Ksour (Naâma, Algérie). – Fl. Medit. 29: 129–142.  https://doi.org/10.7320/FlMedit29.129 Google Scholar

35.

Gordo B., Hadjadj-Aoul S. & Gherib M. 2021: Redécouverte de Crepis arenaria (Pomel) Pomel subsp. arenaria (Asteraceae) en Algérie (Monts des Ksour, Aïn Sefra). – Bull. Soc. Roy. Sci. Liège 90: 361–370.  https://doi.org/10.25518/0037-9565.10672 Google Scholar

36.

Greuter W. 1991: Botanical diversity, endemism, rarity, and extinction in the Mediterranean area: an analysis based on the published volumes of Med-Checklist. – Bot. Chron. (Patras) 10: 63–79. Google Scholar

37.

Greuter W. 1994: Extinctions in Mediterranean areas. – Philos. Trans., Ser. B 344: 41–46.  https://doi.org/10.1098/rstb.1994.0049 Google Scholar

38.

Guittonneau G.-G. 2017: Aperçu sur la taxonomie, l'écologie et la physiologie du genre Erodium L'Hér. dans le bassin méditerranéen. – Published at https://www.tela-botanica.org/wp-content/uploads/2017/03/apercu_de_la_taxonomie_du_genre_erodium.pdf[accessed Jul 2022]. Google Scholar

39.

Hamel T., de Bélair G., Slimani A. & Meddad-Hamza A. 2021: De nouvelles données sur l'état critique d'Erica numidica (Maire) Romo & Borat. en Numidie (Algérie orientale). – Lejeunia 205: 1–16.  https://doi.org/10.25518/0457-4184.2416 Google Scholar

40.

Hamel T., Seridi R., de Bélair G., Slimani A. R. & Babali B. 2013: Flore vasculaire rare et endémique de la péninsule de l'Edough (Nord–Est algérien). – Synthèse 26: 65–74. Google Scholar

41.

Helme N. A. & Trinder-Smith T. H. 2006: The endemic flora of the Cape Peninsula, South Africa. – S. African J. Bot. 72: 205–210.  https://doi.org/10.1016/j.sajb.2005.07.004 Google Scholar

42.

Hobohm C. (ed.) 2014: Endemism in vascular plants. – Dordrecht: Springer.  https://doi.org/10.1007/978-94-007-6913-7 Google Scholar

43.

IUCN 2012: IUCN Red List categories and criteria, version 3.1, second edition. – Gland & Cambridge: SSC Commission, IUCN. – Published at https://portals.iucn.org/library/node/10315[accessed Jul 2022]. Google Scholar

44.

IUCN 2020: Algeria and Morocco acknowledge biodiversity value of cultural parks, biosphere and hunting reserves through OECMs. – Publishedat  https://www.iucn.org/news/mediterranean/202009/algeria-and-morocco-acknowledge-biodiversity-value-cultural-parks-biosphere-and-hunting-reserves-through-oecms[accessed Jan 2023]. Google Scholar

45.

IUCN 2022: The IUCN Red List of threatened species. Version 2022-2. – Published at https://www.iucnredlist.org/[accessed Jul 2022]. Google Scholar

46.

JORA 2012: Décret exécutif no 12-03 du 10 Safar 1433 correspondant au 4 janvier 2012 fixant la liste des espèces végétales non cultivées protégées. – Journal Officiel de la République Algérienne, n° 03 du 18 janvier2012. Google Scholar

47.

Khedim T., Amirouche N. & Amirouche R. 2016: Morphological and cytoxanomic data of Allium trichocnemis and A. seirotrichum (Amaryllidaceae) endemic to northern Algeria, compared with A. cupanii group. – Phytotaxa 243: 247–259.  https://doi.org/10.11646/phytotaxa.243.3.3 Google Scholar

48.

Laffan S. W. & Crisp M. D. 2003: Assessing endemism at multiple spatial scales, with an example from the Australian vascular flora. – J. Biogeogr. 30: 511–520.  https://doi.org/10.1046/j.1365-2699.2003.00875.x Google Scholar

49.

Le Houérou H. N. 1995: Bioclimatologie et biogéographie des steppes arides du Nord de l'Afrique. Diversité biologique, développement durable et désertisation. – Options Médit. 10: 1–396. Google Scholar

50.

Libiad M., Khabbach A., El Haissoufi M., Bourgou S., Megdiche-Ksouri W., Ghrabi-Gammar Z., Sharrock S. & Krigas N. 2020: Ex-situ conservation of single-country endemic plants of Tunisia and northern Morocco (Mediterranean coast and Rif region) in seed banks and botanic gardens worldwide. – Kew Bull. 75(46).  https://doi.org/10.1007/s12225-020-09903-6 Google Scholar

51.

Lidén M. 1986: Synopsis of Fumarioideae (Papaveraceae) with a monograph of the tribe Fumarieae. – Opera Bot. 88: 1–133. Google Scholar

52.

Maire R. 1952–1987: Flore de l'Afrique du Nord (Maroc, Algérie, Tunisie, Tripolitaine, Cyrénaïque et Sahara). – Paris: Lechevalier. Google Scholar

53.

Mansouri S., Miara M. D. & Hadjadj-Aoul S. 2018: Etat des connaissances et conservation de flore endémique dans la région d'Oran (Algérie occidentale). – Acta Bot. Malacit. 43: 23–30.  https://doi.org/10.24310/abm.v43i0.4361 Google Scholar

54.

Mathez J., Quézel P. & Raynaud C. 1985: The Maghreb countries. – Pp. 141–157 in: Gomez-Campo C. (ed.), Plant conservation in the Mediterranean area. – Dordrecht: Junk Publishers. Google Scholar

55.

Médail F. & Diadéma K. 2009: Glacial refugia influence plant diversity patterns in the Mediterranean basin. – J. Biogeogr. 36: 1333–1345.  https://doi.org/10.1111/j.1365-2699.2008.02051.x Google Scholar

56.

Médail F. & Quézel P. 1997: Hot-spots analysis for conservation of plant biodiversity in the Mediterranean basin. – Ann. Missouri Bot. Gard. 84: 112–127.  https://doi.org/10.2307/2399957 Google Scholar

57.

Meddour R. 1988: Quelques commentaires sur la liste des plantes rares et menacées d'Algérie. – Ann. Rech. Forest. Algérie 3( 3 ): 43–65.  https://www.asjp.cerist.dz/en/article/109777  Google Scholar

58.

Meddour R. 2012: Bioclimatologie, phytogéographie & phytosociologie en Algérie (exemple des écosystèmes forestiers et préforestiers en Kabylie djurdjuréenne. – Mauritius: Presses Académiques Franco-phones. Google Scholar

59.

Meddour R. & Sahar O. 2021: Floristic inventory of Djurdjura National Park, northern Algeria: a first checklist of its vascular flora. – Phytotaxa 490: 221–238.  https://doi.org/10.11646/phytotaxa.490.3.1 Google Scholar

60.

Meddour R., Sahar O. & Médail F. 2021: Checklist of the native tree flora of Algeria: diversity, distribution, and conservation. – Pl. Ecol. Evol. 154: 405–418.  https://doi.org/10.5091/plecevo.2021.1868 Google Scholar

61.

Medjahdi B., Ibn Tattou M., Barkat D. & Benabdeli K. 2009: La flore vasculaire des Monts des Trara (Nord Ouest algérien). – Acta Bot. Malacit. 34: 57–75.  https://doi.org/10.24310/abm.v34i0.6917 Google Scholar

62.

Miara M. D., Ait Hammou M., Dahmani W., Negadi M. & Djellaoui A. 2018a: Nouvelles données sur la flore endémique du sous-secteur de l'Atlas tellien Oranais “O3” (Algérie occidentale). – Acta Bot. Malacit. 43: 63–69.  https://doi.org/10.24310/abm.v43i0.4453 Google Scholar

63.

Miara M. D., Ait Hammou M., Hadjadj Aoul S. & Rebbas K. 2014: Redécouverte d'Otocarpus virgatus Durieu (Brassicaceae) dans la région de Tiaret (Nord–Ouest de l'Algérie). – Bull. Soc. Linn. Provence 65: 31–35. Google Scholar

64.

Miara M. D., Ait Hammou M., Rebbas K. & Bendif H. 2017: Flore endémique, rare et menacées de l'Atlas tellien occidental de Tiaret (Algérie). – Acta Bot. Malacit. 42: 271–285.  https://doi.org/10.24310/abm.v42i2.3590 Google Scholar

65.

Miara M. D., Ait Hammou M. & Skipper J. 2018b: The extinction of Faure's broom Adenocarpus faurei Maire (Leguminosae) in Algeria. – J. Threat. Taxa 10: 11595–11598.  https://doi.org/10.11609/jott.3887.10.5.11595-11598 Google Scholar

66.

Millaku F., Krasniqi E., Berisha N. & Rexhepi F. 2016: Conservation assessment of the endemic plants from Kosovo. – Hacquetia 16: 35–47.  https://doi.org/10.1515/hacq-2016-0024 Google Scholar

67.

Mostari A., Benabdelli K. & Véla E. 2020: Le littoral de Mostaganem (Algérie), une “zone importante pour les plantes” (ZIP) autant négligée que menacée. – Fl. Medit. 30: 207–233.  https://doi.org/10.7320/FlMedit30.207 Google Scholar

68.

Mostari A., Limam M. & Véla E. 2016: Données préliminaires à l'évaluation des menaces selon les critères de la liste rouge UICN pour Salvia balansae de Noé, endémique d'Algérie. – Poster at XV OPTIMA Meeting, June 6–11, 2016, Montpellier.  https://doi.org/10.13140/RG.2.2.27359.61607 Google Scholar

69.

Murshid S. S. A., Atoum D., Abou-Hussein D. R., Abdallah H. M., Hareeri R. H., Almukadi H. & Edrada-Ebel R. 2022: Genus Salsola: chemistry, biological activities and future prospective—a review. – Plants 11(714).  https://doi.org/10.3390/plants11060714 Google Scholar

70.

Myers N., Mittermeier R. A., Mittermeier C. G., da Fonseca G. A. B. & Kent J. 2000: Biodiversity hotspots for conservation priorities. – Nature 403: 853–858.  https://doi.org/10.1038/35002501 Google Scholar

71.

Neffati M., Ghrabi-Gammar Z., Akrimi N. & Henchi B. 1999: Les plantes endémiques de la Tunisie. – Fl. Medit. 9: 163–174. Google Scholar

72.

Noroozi J., Talebi A., Doostmohammadi M., Rumpf S. B., Linder H. P. & Schneeweiss G. M. 2018: Hotspots within global biodiversity hotspot – areas of endemism are associated with high mountain ranges. – Sci. Rep. 8: 1–10.  https://doi.org/10.1038/s41598-018-28504-9 Google Scholar

73.

Ouyahia A. 1989: Etude anatomique de quelques armoises du Bassin Méditerranéen Occidental. – Bull. Inst. Sci. Univ. Mohammed V 13: 63–74. Google Scholar

74.

Ozenda P. 2004: Flore et végétation du Sahara. – Paris: CNRS. Google Scholar

75.

POWO [Plants of the World Online] 2022: Plants of the world online. Kew: Royal Botanic Gardens, Kew. – Published at https://powo.science.kew.org/[accessed Jul 2022]. Google Scholar

76.

Pugsley H. W. 1919: A revision of the genera Fumaria and Rupicapnos. – J. Linn. Soc., Bot. 44: 233–353.  https://doi.org/10.1111/j.1095-8339.1919.tb00705.x Google Scholar

77.

Quézel P. 1953: Les Campanulacées d'Afrique du Nord. – Feddes Repert. 56: 1–65.  https://doi.org/10.1002/fedr.19530560102 Google Scholar

78.

Quézel P. 1957: Peuplement végétal des hautes montagnes de l'Afrique du Nord, essai de synthèse biogéographique et phytosociologique. Encyclopédie biogéographique et écologique 10. – Paris: Lechevalier. Google Scholar

79.

Quézel P. 1964: L'endémisme dans la flore de l'Algérie. – Compt. Rend. Séances Soc. Biogéogr. 361: 137–149. Google Scholar

80.

Quézel P. 1978: Analysis of the flora of Mediterranean and Saharan Africa. – Ann. Missouri Bot. Gard. 65: 479–534.  https://doi.org/10.2307/2398860 Google Scholar

81.

Quézel P. 1995: La flore du bassin méditerranéen: origine, mise en place, endémisme. – Ecol. Medit. 21: 19–39.  https://doi.org/10.3406/ecmed.1995.1752 Google Scholar

82.

Quézel P. 2002: Réflexions sur l'évolution de la flore et de la végétation au Maghreb méditerranéen. – Paris: Ibis press. Google Scholar

83.

Quézel P. & Santa S. 1962–1963: Nouvelle flore de l'Algérie et des régions désertiques méridionales 1–2. –Paris: CNRS. Google Scholar

84.

Rabinowitz D. 1981: Seven forms of rarity. – Pp. 205–217 in: Synge H. (ed.), The biological aspects of rare plants conservation. – New York: John Wiley and Sons. Google Scholar

85.

Rankou H., Culham A., Jury S. L. & Christenhusz M. J. M. 2013: The endemic flora of Morocco. – Phytotaxa 78: 1–69.  https://doi.org/10.11646/phytotaxa.78.1.1 Google Scholar

86.

Romo A. M. & Boratyński A. 2010: A new combination in Erica (Ericaceae). – Collect. Bot. (Barcelona) 29: 95–98.  https://doi.org/10.3989/collectbot.2010.v29.009 Google Scholar

87.

Sakhraoui N., Boussouak R. & Chefrour A. 2021: Redécouverte d'une endémique algérienne méconnue, Anthemis maritima subsp bolosii Benedí et Molero, et mise en évidence de nouvelles caractéristiques d'identification. – Bull. Soc. Linn. Provence 72: 75–80. Google Scholar

88.

Sakhraoui N., Boussouak R., Metallaoui S., Chefrour A. & Hadef A. 2020: La flore endémique du Nord–Est algérien face à la menace des espèces envahissantes. – Acta Bot. Malacit. 45: 67–79.  https://doi.org/10.24310/abm.v45i.6138 Google Scholar

89.

Stace C. A. 2022: Conspectus of and key to the world's species of Vulpia C.C. Gmel. (Poaceae: Loliinae) and seven related genera. – Brit. Irish Bot. 4: 74–94.  https://doi.org/10.33928/bib.2022.04.074 Google Scholar

90.

Touati L., Hamel T., Meddad-Hamza A. & de Bélair G. 2021: Analysis of rare and endemic flora in northeastern Algeria: the case of the wilaya of Souk Ahras. – Bull. Soc. Roy. Sci. Liège 90: 213–240.  https://doi.org/10.25518/0037-9565.10514 Google Scholar

91.

Treurnicht H., Colville J. F., Joppa G., Huyser J. & Manning J. 2017: Counting complete? Finalising the plant inventory of a global biodiversity hotspot. – PeerJ 5(e2984).  https://doi.org/10.7717/peerj.2984 Google Scholar

92.

Véla E. & Benhouhou S. 2007: Evaluation d'un nouveau point chaud de biodiversité végétale dans le Bassin méditerranéen (Afrique du Nord). – Compt. Rend. Biol. 330: 589–605.  https://doi.org/10.1016/j.crvi.2007.04.006 Google Scholar

93.

Véla E., de Bélair G., Rosato M. & Rosselló J. A. 2016: Taxonomic remarks on Scilla anthericoides Poir. (Asparagaceae, Scilloideae), a neglected species from Algeria. – Phytotaxa 288: 154–160.  https://doi.org/10.11646/phytotaxa.288.2.5 Google Scholar

94.

Véla E. & Schäfer P. A. 2013: Typification de Juniperus thurifera var. africana Maire, délimitation tax-onomique et conséquences nomenclaturales sur le Genévrier thurifère d'Algérie. – Ecol. Medit. 39: 69–80.  https://doi.org/10.3406/ecmed.2013.1293 Google Scholar

95.

Verlaque R., Médail F., Quézel P. & Babinot J. F. 1997: Endémisme végétal et paléogéographie dans le bassin méditerranéen. – Geobios 30: 159–166.  https://doi.org /10.1016/S0016-6995(97)80083-6 Google Scholar

96.

Vicente A., Alonso M. Á. & Crespo M. B. 2016: Taxonomic circumscription of the N African endemic Biscutella raphanifolia (Brassicaceae) based on morphological and molecular characters. – Willdenowia 46: 411–422.  https://doi.org/10.3372/wi.46.46309 Google Scholar

97.

Vicente A., Alonso M. Á. & Crespo M. B. 2020: Born in the Mediterranean: comprehensive taxonomic revision of Biscutella ser. Biscutella (Brassicaceae) based on morphological and phylogenetic data. – Ann. Missouri Bot. Gard. 105: 195–231.  https://doi.org/10.3417/2020554 Google Scholar

98.

Wahlsteen E. & Tyler T. 2019: Morphometric analyses and species delimitation in Legousia (Campanulaceae). – Willdenowia 49: 21–33.  https://doi.org/10.3372/wi.49.49104 Google Scholar

99.

Walas L. & Taib A. 2022: Environmental regionalization and endemic plant distribution in the Maghreb. – En-vironm. Monit. Assessm. 194: 100.  https://doi.org/10.1007/s10661-021-09707-6 Google Scholar

100.

Walter K. S. & Gillett H. J. (ed.) 1998: 1997 IUCN Red List of threatened plants. – Gland: SSC, IUCN. Google Scholar

Appendices

Appendix 1

Annotated checklist of vascular plants endemic to Algeria

Taxa in the checklist are ordered alphabetically by family, genus, species and subspecies. Family circumscription follows the Angiosperm Phylogeny Group IV (APG IV 2016). The following information is provided after the accepted (according to APD 2022) taxon name:

Regional distribution in Algeria based on floristic regions (derived from taxonomic literature, herbarium specimens, fieldwork): O1-O2-O3-A1-A2-K1-K2-K3-C1-H1-H2-H3-AS1-AS2-AS3-SS1-SS2-SO-SC-SM (acronyms according to Quézel & Santa 1962–1963).

Global conservation status (IUCN 2022): CR = Critically Endangered; EN = Endangered; VU = Vulnerable; DD = Data Deficient; LC = Least Concern.

National protection by decree (PL) or in protected areas (PA).

Range-restricted (RR) distribution, i.e. found solely in one floristic region.

An asterisk (*) before the name indicates range-restricted and/or threatened taxa deserving legal protection (national Red Listing).

Amaranthaceae

*Salsola algeriensis Botsch., SS2, RR

*Salsola chellalensis Botsch., H1, RR

Salsola cruciata L. Chevall. ex Batt., H2-SS1-SS2-SO-SC

*Salsola gypsacea Botsch., H1, RR

*Salsola mairei Botsch., H1, RR

*Salsola praemontana Botsch., H1, RR

*Salsola subglabra Botsch., H1, RR

Amaryllidaceae

Allium trichocnemis J. Gay, A2-K2, [VU B1ab(iii)+ 2ab(iii)], PL, PA

Apiaceae

Ammoides atlantica (Coss. & Durieu) H. Wolff, A2-K1-K2-K3-C1-AS3, PA

Bunium chabertii (Batt.) Batt., K1, PL, PA, RR

Bunium elatum (Batt.) Batt., C1, PL, RR

Bupleurum plantagineum Desf., K2, PL, PA, RR

Daucus gracilis Steinh., K2-K3-C1, [LC]

Heracleum sphondylium subsp. algeriense (Coss. ex Batt. & Trab.) Dobignard, K1-K2-AS3, PA

*Heracleum sphondylium subsp. aurasiacum (Maire) Dobignard, AS3, RR

Pimpinella battandieri Chabert, K1-K2, PL, PA

Aristolochiaceae

Aristolochia fontanesii Boiss. & Reut., A1-K1-K2, PA

Asparagaceae

Bellevalia pomelii Maire, O1, PL, RR

*Drimia anthericoides (Poir.) Véla & Bélair, K2-K3, [EN B2ab(i,ii,iii)], PA

Asteraceae

Anacyclus linearilobus Boiss. & Reut., O1-A1

*Anthemis boveana J. Gay, O1, RR

Anthemis maritima subsp. bolosii Benedí & Molero, K1-K2, PA

Anthemis maritima subsp. pseudopunctata Oberpr., K1-K2, PA

Anthemis punctata subsp. kabylica (Batt.) Oberpr., A1-K1-K2-K3-C1

Anthemis stiparum subsp. sabulicola (Pomel) Oberpr., SS1-SS2

Anthemis stiparum Pomel subsp. stiparum, H1-H2-SS1-SS2

Artemisia alba subsp. kabylica (Chabert) Greuter, K1, PA, RR

*Artemisia algeriensis Filatova, AS3, RR

Atractylis caerulea Batt., H1, PL, RR

Calendula suffruticosa subsp. balansae (Boiss. & Reut.) Ohle, O1-O3

Calendula suffruticosa subsp. monardii (Boiss. & Reut.) Ohle, A1, PL, RR

Carduus numidicus Durieu, K1-K2-K3-C1, PA

Carthamus chouletteanus (Pomel) Greuter, H2, PL, RR

Carthamus ilicifolius (Pomel) Greuter, H1, PL, RR

Carthamus strictus (Pomel) Batt., K1-K2-C1, PL, PA

*Centaurea djebel-amouri Greuter, AS2, RR

Centaurea ferox Desf., O1-O2-O3-A1-AS1

Centaurea foucauldiana Maire, SC, PL, PA, RR

*Centaurea obtusiloba Batt., O3, RR

Centaurea phaeolepis Coss., O3, PL, RR

*Centaurea resupinata subsp. vulnerariifolia (Pomel) Breitw. & Podlech, H1, RR

Centaurea tougourensis Boiss. & Reut., C1-AS2-AS3, PA

Centaurea vesceritensis Boiss., C1-AS3

Chiliadenus sericeus subsp. virescens (Maire) Greuter, SC, PL, PA, RR

Cirsium kirbense Pomel, A1-A2-K1, PL, PA

Coleostephus multicaulis (Desf.) Durieu, O1-O2-O3-H1

Crepis arenaria (Pomel) Pomel subsp. arenaria, O2-H1-AS1

Crepis arenaria subsp. suberostris (Batt.) Greuter, O1, PL, RR

Crepis claryi Batt., AS2, PL, RR

Crepis faureliana Maire, AS3, PL, RR

*Crepis pulchra susbsp. africana Babcock, A1, RR

Helminthotheca balansae (Coss. & Durieu) Lack, O1-O2-A2-C1

Hieracium amplexicaule subsp. peyerimhoffii (Maire) Zahn, AS3, PL, RR

Hieracium cerinthoides subsp. ernesti (Maire) Greuter, K2, PL, PA, RR

Hieracium faurelianum Maire, C1-AS3, PL, PA

Hieracium grandifolium Sch. Bip., K1-K2, PL, PA

Hypochaeris claryi Batt., H1-AS2, PL

Hypochaeris saldensis Batt., K2, PL, PA, RR

Jacobaea gallerandiana (Coss. & Durieu) Pelser, K1-K2-AS3, PL, PA

Leontodon balansae Boiss., O3-A2-C1-AS2-AS3, PA

Leontodon djurdjurae Batt., K1, PA, RR

Mecomischus pedunculatus (Coss. & Durieu) Oberpr. & Greuter, O1, PL, RR

Onopordum algeriense (Munby) Pomel, A1, PL, RR

Pallenis maritima subsp. sericea (Maire & Wilczek) Véla, O1, PA, RR

Phagnalon garamantum Maire, SC, PL, PA, RR

Pulicaria filaginoides Pomel, O1, [CR B1ab(iii)+2ab(iii)], PL

Pulicaria lothei Maire, SC, PL, PA, RR

Pulicaria vulgaris subsp. pomeliana (Faure & Maire) E. Gamal-Eldin, O3, PL, PA, RR

Sonchus tenerrimus subsp. amicus (Maire & Wilczek) Véla, O1, PA, RR

Berberidaceae

Epimedium perralderianum Coss., K2, PL, PA, RR

Boraginaceae

Cynoglossum gymnandrum (Coss.) Greuter & Burdet, K1, PL, PA, RR

*Echium clandestinum Pomel, H3, RR

Myosotis speciosa Pomel, K1-K2-C1, PA

Brassicaceae

Alyssum luteolum Pomel, A2, PA, RR

Arabis doumetii Coss., K1-K2, PL, PA

Biscutella raphanifolia var. algeriensis (Jord.) A. Vicente & al., O3-A2, PA

*Brassica fruticulosa subsp. numidica (Coss.) Maire, K3, [DD], RR

*Brassica fruticulosa subsp. pomeliana Maire ex Greuter, O1, [DD], RR

Brassica spinescens Pomel, O1, PL, PA, RR

Crambe kralikii subsp. garamas (Maire) Podlech, SC, PL, PA, RR

Diplotaxis erucoides subsp. cossoniana (Reut. ex Boiss.) Mart.-Laborde, C1-H3-AS1-AS2-AS3

Erysimum cheiri subsp. inexpectans Véla, Ouarmim & Dubset, K2, PA, RR

*Erysimum semperflorens subsp. elatum (Pomel) Maire, O1, RR

*Hirschfeldia incana subsp. consobrina (Batt.) Maire, O3, RR

Iberis peyerimhoffii Maire, A2, PL, RR

Lepidium rigidum Pomel, A2-K1-K2-K3-C1-H2-AS3, PA

*Moricandia spinosa Pomel, SS2, RR

Noccaea atlantica (Batt.) Al-Shehbaz, K2, PL, RR

Otocarpus virgatus Durieu, H1, PL, RR

Sinapis pubescens subsp. aristidis (Pomel) Maire & Weiller, O2, C1

Sinapis pubescens subsp. indurata (Coss.) Batt., K2-C1-H2, PA

Campanulaceae

Asyneuma rigidum subsp. aurasiacum (Batt. & Trab.) Damboldt, AS3, PL, RR

Campanula baborensis Quézel, K2, PL, RR

Campanula bordesiana Maire subsp. bordesiana, SC, PA, RR

Campanula jurjurensis Pomel, K1-AS3, PA

Campanula numidica Durieu, C1, PL, RR

Legousia juliani (Batt.) Briq., C1, PL, RR

Caprifoliaceae

Fedia graciliflora subsp. calycina (Maire) Mathez & Xena, K1, PA, RR

Fedia graciliflora subsp. sulcata (Pomel) Mathez & Xena, K1-K2-K3, PA

Lomelosia camelorum (Coss. & Durieu) Greuter & Burdet, SS2, PL, RR

Lonicera kabylica (Batt.) Rehder, K1-K2, PL, PA

Sixalix cartenniana (Pons & Quézel) Greuter & Burdet, A1, PL, RR

Valerianella leptocarpa Pomel, O3, PL, RR

Caryophyllaceae

Bufonia chevallieri Batt., AS3, PL, RR

*Bufonia duvaljouvei subsp. battandieri (Rouy ex Batt.) Maire, AS3, RR

Dianthus sylvestris subsp. aristidis (Batt.) Greuter & Burdet, K2-K3

*Herniaria oranensis Chaudhri subsp. oranensis, O1, RR

*Minuartia tenuissima subsp. numidica (Maire) Greuter & Burdet, C1, RR

Moehringia stellarioides Coss., K2, PL, PA, RR

Paronychia haggariensis subsp. sahariensis Chaudhri, SC, PA, RR

Polycarpaea robbairea subsp. garamantum (Quézel) Dobignard, SS1-SS2-SO-SC, PA

*Silene aristidis Pomel, A1-A2-K2, [VU A3c]

*Silene auriculifolia Pomel, O1, [CR B1ab(iv,v)+2ab (iv,v)], RR

Silene choulettii Coss., K1-K2-K3-C1, PA

Silene cirtensis Pomel, K3-C1, PL

Silene claryi Batt., H1-AS1-AS2-AS3

Silene colorata subsp. amphorina (Pomel) Batt., K3, PL, PA, RR

Silene ghiarensis Batt., O2-A2-C, PL

Silene glaberrima Faure & Maire, O2, PL, RR

Silene kremeri Soy.-Will. & Godr., C1-H2

Silene pseudovestita Batt., A2, PL, RR

Silene reverchonii Batt., K2, PL, PA, RR

Silene sessionis Batt., K2, [EN D], PL, PA, RR

Spergularia microsperma subsp. fontenellei (Maire) Greuter & Burdet, SC, PL, PA, RR

Spergularia pycnorrhiza Foucaud ex Batt., O1, PL, PA, RR

Cistaceae

Helianthemum eriocephalum Pomel, SS2, PL, RR

Helianthemum geniorum Maire, SC, PL, PA, RR

Helianthemum maritimum Pomel, O1, PL, RR

Crassulaceae

Sedum multiceps Coss. & Durieu, K2-C1, PL, PA

Cupressaceae

Cupressus duprezianaA. Camus, SC, [CR C1], PL, PA, RR

Juniperus thurifera subsp. aurasiaca (Véla & P. Schäf.) Véla, AS3, PL, RR

Ephedraceae

*Ephedra alata subsp. monjauzeana Dubuis & Faurel, SS2, RR

Ericaceae

Erica numidica (Maire) Romo & Borat., K3, PA, RR

Euphorbiaceae

*Euphorbia hieroglyphica Coss. & Durieu ex Boiss., C1, RR

Fabaceae

Adenocarpus faurei Maire, O3, PL, RR

Adenocarpus umbellatus Batt., O1, PL, RR

Astragalus reinii subsp. nemorosus (Batt.) Maire, A2, PL, RR

Coronilla valentina subsp. speciosa (Uhrová) Greuter & Burdet, A1-A2-K1-K2-C1-AS3, PA

Genista numidica subsp. filiramea (Pomel) Batt., K1, PA, RR

*Genista numidica subsp. ischnoclada (Pomel) Batt., O1, RR

Genista numidica Spach subsp. numidica, K1-K2-K3, PA

*Genista numidica subsp. sarotes (Pomel) Batt., A2, RR

Genista spinulosa Pomel, O1, PL, RR

Genista triacanthos subsp. vepres (Pomel) P. E. Gibbs, K1-K2-K3, PL, PA

Hedysarum naudinianum Coss. & Durieu, A1-A2-C1, PA

Hedysarum perrauderianum Coss. & Durieu, C1-AS3, PL, PA

Ononis alba subsp. monophylla (Desf.) Murb., A1-K2-K3, PA

*Ononis aurasiaca Förther & Podlech, AS3, RR

Ononis avellana Pomel, O1, PL, RR

*Ononis cephalantha Pomel subsp. cephalantha, A2, RR

Ononis clausonis (Pomel) Pomel, A1-A2

Ononis crinita Pomel, O1, PL, RR

Ononis incisa Batt., H1-H2

Ononis megalostachys Munby, O2, PL, RR

Ononis serotina Pomel, O3-A1

Trigonella balachowskyi Leredde, SC, PL, PA, RR

Vicia ochroleuca subsp. atlantica (Pomel) Greuter & Burdet, A2-K1-K2-C1, PA

Vicia ochroleuca subsp. baborensis (Batt. & Trab.) Greuter & Burdet, K2, PA, RR

Geraniaceae

Erodium battandierianum Rouy, K2, PL, PA, RR

*Erodium guinochetianum Guitt., O3, RR

Erodium malacoides subsp. floribundum (Batt.) Batt., O3-A2, PA

Erodium medeense Batt., O3-A2

Hydrocharitaceae

Najas marina subsp. arsenariensis (Maire) Triest, O1, [CR B1ab(iii)+2ab(iii)], PL, RR

Iridaceae

Romulea penzigii Bég., K1, [DD], PL, PA

Romulea vaillantii Quézel, AS3, [DD], PL

Isoetaceae

Isoetes longissima subsp. perralderiana (Milde) Troia & Greuter, K1-K2

Lamiaceae

Ballota hirsuta subsp. saharica (Diels) Greuter & Burdet, SC, PA, RR

Calamintha candidissima (Munby) Benth., O1-O2-A1-AS3

Calamintha hispidula Boiss. & Reut., K2-K3, PL, PA

Calamintha nervosa Pomel, K2, PL, PA, RR

Origanum floribundum Munby, A2-K1, PA

Salvia balansae de Noé, O1-AS3, PL

Sideritis guyoniana Boiss. & Reut., O1-K2-C1-AS3

Sideritis maura de Noé, O1, PL, RR

Stachys guyoniana Batt., C1-AS3, PL

Stachys mialhesii de Noé, A2-K1-K2, PL, PA

*Stachys saxicola subsp. chelifensis Quézel & Simonn., O2, RR

Teucrium albidum Munby, O3, PA, RR

*Teucrium aureiforme Pomel, O1, RR

Teucrium kabylicum Batt., K1-K2-K3, PL, PA

Teucrium polium subsp. chevalieri Maire, SC, PA, RR

Teucrium santae Quézel & Simonn. ex Greuter & Burdet, O2, PL, RR

Teucrium thymoides Pomel, AS2-AS3

Thymus guyonii de Noé, H1-H2-SS2

Thymus lanceolatus Desf., O3-A2-H1-H2, PA

Malvaceae

Malope malacoides subsp. asterotricha (Pomel) Greuter & Burdet, K3-C1-H2-AS3

Malope malacoides subsp. laevigata (Pomel) Greuter & Burdet, O2-C1-H2-AS3

Orchidaceae

Dactylorhiza maculata subsp. battandieri (Raynaud) Baumann & Künkele, K2, [LC], PA, RR

Orobanchaceae

Odontites discolor subsp. ciliatus (Pomel) Bolliger, K3, PL, RR

Odontites discolor Pomel subsp. discolor, K3, PL, RR

Pedicularis numidica Pomel, K2, PL, PA, RR

Paeoniaceae

Paeonia algeriensis Chabert, K1-K2, PA

Papaveraceae

Corydalis solida subsp. bracteosa (Batt. & Trab.) Greuter & Burdet, K1-K2, PA

*Fumaria capitata Lidén, A2, RR

Fumaria dubia Pugsley, O2-A1

Fumaria mairei Pugsley ex Maire subsp. mairei, K1, PL, RR

Fumaria mairei subsp. saxicola Lidén, A2, PL, RR

Fumaria normanii Pugsley, A2, PA, RR

*Rupicapnos africana (Lam.) Pomel subsp. africana, O3, RR

Rupicapnos africana subsp. cerefolia (Pomel) Maire, A1-A2

*Rupicapnos africana subsp. oranensis (Pugsley) Maire, O2, RR

*Rupicapnos calcarata Lidén, AS2, RR

*Rupicapnos longipes subsp. aurasiaca Maire ex Lidén, AS3, RR

*Rupicapnos longipes (Coss. & Durieu) Pomel subsp. longipes, AS3, RR

*Rupicapnos longipes subsp. reboudiana (Pomel) Lidén, C1, RR

Rupicapnos muricaria Pomel, SS2, PL, RR

Rupicapnos numidica subsp. delicatula (Pomel) Maire, H1-AS2, PL

Rupicapnos ochracea Pomel, H2-AS2

Rupicapnos sarcocapnoides (Coss. & Durieu) Pomel, C1, PA, RR

Pinaceae

Abies numidica Carrière, K2, [CR B1ab(i,ii,iii)+2ab (i,ii,iii)], PL, PA

Plantaginaceae

Kickxia elatinoides (Desf.) Rothm., O1-H1

Linaria decipiens Batt., K1-K2-C1-AS3, PL, PA

Linaria parviracemosa D. A. Sutton, K1-K2, PA

Plantago atlantica Batt., O3-A2-K1, PA

Plumbaginaceae

*Limonium afrum (Pignatti) Domina, O1, RR

Limonium cyrtostachyum (Girard) Brullo, O1-A1

Limonium gougetianum subsp. multiceps (Pomel) Greuter & Burdet, A1, PL, RR

Limonium letourneuxii (Coss. ex Batt.) Greuter & Burdet, A1, PL, RR

Poaceae

Agropyropsis lolium (Balansa ex Coss. & Durieu) A. Camus, K2-C1-H1-H2-AS1-AS2, PL, PA

Avena macrostachya Balansa ex Coss. & Durieu, K1-C1-AS3, PA

*Corynephorus articulatus subsp. oranensis (Murb.) Maire & Weiller, O1, RR

Festuca algeriensis Trab., O3-A1-K1-K2-C1-AS3, PL, PA

Festuca atlantica Duval-Jouve ex Clauson subsp. atlantica, A2-K1-K2-C1-AS3, PA

Festuca aurasiaca (Trab.) Trab., A1-K1-C1-AS3, PA

Festuca djurdjurae (Trab.) Romo, K1, PA, RR

*Festuca trabutii E. B. Alexeev, C1, RR

Sorghum annuum (Trab.) Maire, K2, PL, RR

Stipa atlantica Smirn., K1-AS3, PA

Stipa hoggarensis Chrtek & Martinovský, SC, PA, RR

Tricholemma breviaristatum (Barratte) Röser, H1, PL, RR

Trisetaria nitida (Desf.) Maire, O2-O3, PL

*Trisetum flavescens subsp. macratherum (Maire & Trabut) Dobignard, O1, RR

*Vulpia geniculata subsp. monanthera (Maire) Maire, A1, RR

Vulpia obtusa Trab., K3, PL, PA, RR

Polygalaceae

Polygala rosea Desf., O3, PA, RR

Polygonaceae

Rumex algeriensis Barratte & Murb. A1-K3, [EN B2ab(iii,v); D], PL

Rumex cyprius subsp. coloratus Sam., SS1-SS2

Rumex cyprius subsp. vesceritensis (Murb.) Sam., AS3-SS2-SC, PA

Primulaceae

Cyclamen repandum var. baborense Batt. ex Debussche & Quézel, K2, PL, PA, RR

Resedaceae

Reseda tefedestica (Maire) Abdallah & de Wit, SC, PA, RR

Rosaceae

Potentilla caulescens subsp. djurdjurae (Chabert) Romo, K1-K2, PA

Rubiaceae

*Galium bourgaeanum Coss. ex Ball subsp. bourgaeanum, O3, RR

Galium numidicum Pomel, AS3, PL, RR

Galium perralderii Batt., K1-K2, PL, PA

Saxifragaceae

Saxifraga numidica Maire, K2, PL, PA, RR

Scrophulariaceae

Digitalis atlantica Pomel, K2, PL, PA, RR

Verbascum fontanesii Benedí, O1-O2-O3-A1-A2-K1-K2-K3-C1-AS2

Verbascum pinnatisectum (Batt.) Benedí, O1-H1, PL

Rachid Meddour, Ouahiba Sahar, and Stephen Jury "New analysis of the endemic vascular plants of Algeria, their diversity, distribution pattern and conservation status," Willdenowia 53(1-2), 25-43, (21 March 2023). https://doi.org/10.3372/wi.53.53102
Received: 23 October 2022; Accepted: 7 February 2023; Published: 21 March 2023
KEYWORDS
Algeria
Endemism
IUCN
Mediterranean flora
NORTH AFRICA
phytogeography
range-restricted
Back to Top