Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
G-protein coupled receptors (GPCRs) mediate responses to many types of extracellular signals. So far, bovine rhodopsin, the inactive form of a GPCR, is the only member of the family whose three dimensional structure has been determined. It would be desirable to determine the structure of the active form of a GPCR. In this paper, we report the large scale preparation of a stable, homogenous species, truncated octopus rhodopsin (t-rhodopsin) in which proteolysis has removed the proline-rich C-terminal; this species retains the spectral properties and the ability for light-induced G-protein activation of unproteolyzed octopus rhodopsin. Moreover, starting from this species we can prepare a pure, active form of pigment, octopus t-Acid Metarhodopsin which has an all-trans-retinal as its agonist. Photoisomerization of t-Acid Metarhodopsin leads back to the inactive form, t-rhodopsin with the inverse agonist 11-cis-retinal. Octopus t-Acid Metarhodopsin can activate an endogenous octopus G-protein in the dark and this activity is reduced by irradiation with orange light which photoregenerates t-Acid Metarhodopsin back to the initial species, t-rhodopsin.
To give information about intracellular Ca2 translocation during and after K-contractures in vertebrate skeletal muscle fibers, we examined recovery of action potentials and twitches after interruption and spontaneous relaxation of K-contractures at low temperature (3°C) that greatly reduced the rate of Ca2 reuptake by the sarcoplasmic reticulum. On membrane repolarization interrupting K-contractures, the amplitude of both action potentials and twitches recovered quickly, while the falling phase of action potential was markedly slowed at first to prolong its refractory period, so that repetitive stimulation (20 Hz) did not produce a complete tetanus. Meanwhile, on membrane repolarization after spontaneous relaxation of K-contractures, the action potentials were markedly reduced in amplitude and prolonged in duration at first, also resulting in prolonged refractory period. These results are discussed in connection with Ca2 absorption to the surface and transverse tubule membranes, producing changes in action potential kinetics.
The catfish, Plotosus lineatus, forms a dense ball-shaped school soon after hatching. The involvement of a chemical cue(s) in this behavior was indicated from the observations that P. lineatus was attracted not only to seawater conditioned with the schoolmates (schoolmate seawater) but also to the skin mucus collected from the schoolmates. To determine the nature of the chemical cue, we first established a novel bioassay that monitored a characteristic ‘turn behavior' toward an agar block containing skin mucus collected from the schoolmates. The bioassay-guided fractionations of skin mucus led to a final preparation wherein activity was contained in a single peak in high performance liquid chromatography on a polyamine column. The spectral data of the final preparation indicated that the purified material was a mixture of phosphatidylcholine molecular species, which was supported by the fact that the final active preparation lost the activity when treated with phospholipase A2, indicating that the school recognition substance is degraded by phospholipase A2. From these results, we proposed that the chemical cue to recognize the school in P. lineatus may be PC molecular species.
The development of Colobocentrotus mertensii from embryos to larvae and early juveniles was observed to give the first detailed description of larval and juvenile formation and skeletal structures in echinometrid sea urchins. The first larval spicules appeared at the mesenchyme blastula stage, whereas, in many echinoids, spicules were formed after gastrulation. From late eight-armed larva to juvenile, body color of C. mertensii was deep red, which has never been described for any echinoid before.
The adult form of C. mertensii is characteristic in that the spines at the aboral side are short, truncated and pavement-like. The first sign of peculiar adult features could be seen in the juvenile spines and adult spines, which are broader than those of closely related Anthocidaris crassispina. The primary podia emerged on the left side of larval body were more stout and thicker in C. mertensii than in A. crassispina. The present study shows that developmental process of larval structure of C. mertensii is in general similar to the A. crassispina and the differences is first seen in juvenile structure including the distribution of pigment spots and morphology of adult spine.
When exposed to light, planarians display a distinctive light avoidance behavior known as negative phototaxis. Such behavior is temporarily suppressed when animals are decapitated, and it is restored once the animals regenerate their heads. Head regeneration and the simple but reproducible phototactic response of planarians provides an opportunity to study the association between neuronal differentiation and the establishment of behavior in a simple, experimentally tractable metazoan. We have devised a phototaxis assay system to analyze light response recovery during head regeneration and determined that light evasion is markedly re-established 5 days after amputation. Immunohistological and in situ hybridization studies indicate that the photoreceptors and optic nerve connections to the brain begin by the fourth day of cephalic regeneration. To experimentally manipulate the light response recovery, we performed gene knockdown analysis using RNA interference (RNAi) on two genes (1020HH and eye53) previously reported to be expressed at 5 days after amputation and in the dorso-medial region of the brain (where the optic nerves project). Although RNAi failed to produce morphological defects in either the brain or the visual neurons, the recovery of the phototactic response normally observed in 5-day regenerates was significantly suppressed. The data suggest that 1020HH and eye53 may be involved in the functional recovery and maintenance of the visual system, and that the phototaxis assay presented here can be used to reliably quantify the negative phototactic behavior of planarians.
Following the reading of its draft genome sequence and the collection of a large quantity of cDNA information, Ciona intestinalis is now becoming a model organism for whole-genome analyses of the expression and function of developmentally relevant genes. Although most studies have focused on larval structures, the development of the adult form is also very interesting in relation to tissues and organs of vertebrate body. Here we conducted detailed observations of the development of tissues and organs in Ciona intestinalis larva and juveniles until so-called the 2nd ascidian stage. These observations included examination of the oral siphon, tentacle, oral pigments and atrial pigments, atrial siphon, ganglion and neural gland, longitudinal muscle, stigmata, transverse bar and languet, longitudinal bar and papilla, heart, digestive organ, gonad, endostyle, and stalk and villi. The findings from these observations make a new staging system for juvenile development possible. Based on the development of the internal organs, we propose here nine stages (stage 0 ∼ stage 8) starting with swimming larvae and proceeding through juveniles until the 2nd ascidian stage. These descriptions and staging system provide a basis for studying cellular and molecular mechanisms underlying the development of adult organs and tissues of this basal chordate.
In starfish, the peptide hormone gonad-stimulating substance (GSS) secreted from nervous tissue stimulates oocyte maturation to induce 1-methyladenine (1-MeAde) production by ovarian follicle cells. The SALMFamide family is also known to an echinoderm neuropeptide. The present study examined effect of SALMFamide 1 (S1) on oocyte maturation of starfish Asterina pectinifera. Unlike GSS, S1 did not induce spawning in starfish ovary. In contrast, S1 was found to inhibit GSS secretion from radial nerves by treatment with high K concentration. Fifty percent inhibition was obtained by 0.1 mM S1. S1 did not have any effect on GSS- and 1-MeAde-induced oocyte maturation. Following incubation with a S1 antibody and subsequently with rhodamine-conjugated second antibody, neural networks were observed in ovaries. The networks were restricted mainly to their surface with little evidence of immunoreactivity inside the basement membranes. This indicates that neural networks are distributed in the ovarian wall. The result further suggests that S1 plays a role in oocyte maturation to regulate GSS secretion from the nervous system.
Previous studies have shown that estrogen plays an important role in sex change of protogynous honeycomb grouper, and that the treatments with aromatase inhibitor (AI) cause estrogen depletion and complete sex inversion of pre-spawning females into functional males. In the present study, we examined whether AI causes sex inversion of sexually immature females. Female honeycomb groupers were implanted with various doses of Fadrozole (0, 100, 500 and 1000 μg/fish) in the non-breeding season, and resultant changes in the gonadal structures and the plasma levels of sex steroid hormones (estradiol-17β, E2; testosterone, T; 11-ketotestosterone, 11-KT) were examined three months after implantation. Vehicle-implanted groups did not change sex, while 100 and 500 μg AI-implanted groups had turned into transitionals with intersex gonad. In contrast, the highest dose receiving group exhibited both transitional and male phases. Transitional phase gonad had atretic oocytes and spermatogenic germ cells at the late stages of spermatogenesis, while male phase testis contained spermatozoa accumulated in the seminiferous tubules. All males released sperm upon slight pressure on the abdomen. In the AI-implanted fish, plasma levels of E2 decreased in a dose-dependent manner, while the levels of 11-KT were high in the highest dose receiving group. Present results suggest that estrogen plays an important role in sex change of protogynous honeycomb grouper, and that treatments with AI potentially inhibits endogenous E2 production in vivo, causing oocyte degeneration and subsequently the sex inversion from female to male. The Fadrozole could be an important tool for manipulating the sex of hermaphrodite fishes.
A pleuronectiform fish, the barfin flounder Verasper moseri, has three molecular forms of gonadotropin-releasing hormone (GnRH) in the brain, salmon GnRH (sGnRH), chicken GnRH-II (cGnRHII) and seabream GnRH (sbGnRH). To elucidate the ontogenic origin of the neurons that produce these GnRH molecules, the development of three GnRH systems was examined by in situ hybridization and immunocytochemistry. Neuronal somata that express sGnRH mRNA were detected first in the vicinity of the olfactory epithelium 21 days after hatching (Day 21), and then in the transitional area between the olfactory nerve and olfactory bulb and the terminal nerve ganglion on Day 28. cGnRH-II mRNA-expressing neuronal somata were first identified in the midbrain tegmentum near the ventricle on Day 7. cGnRH-IIimmunoreactive (ir) fibers were first found in the brain on Day 7. sbGnRH mRNA-expressing neuronal somata were first detected in the preoptic area on Day 42. sbGnRH-ir fibers were localized in the preoptic area-hypothalamus, and formed a distinctive bundle of axons projecting to the pituitary on Day 70. These results indicate that three forms of GnRH neurons have separate embryonic origins in the barfin flounder as in other perciform fish such as tilapia Oreochromis niloticus and red seabream Pagrus major: sGnRH, cGnRH-II and sbGnRH neurons derive from the olfactory placode, the midbrain tegmentum near the ventricle and the preoptic area, respectively.
The oviductal epithelium consists of two major cell populations, secretory cells and cilial cells. In a previous report, we established clonal cell lines from the epithelium and stroma of an oviduct which allowed us to analyze stromal contribution to epithelial functions. Three stromal cell lines were co-cultured in separated apparatus with 3 epithelial cell lines, respectively. Two stromal cell lines preferentially stimulated mogp-1 expression on secretory cells and the stimulation was additive with estrogen. The lines had no effect on cilial cells. One stromal cell line preferentially stimulated foxj1 expression on cilial cells and the stimulation relieved suppression by estrogen. The line had no effect on secretory cells. Experiments with conditioned media of the stromal cells confirmed the results of co-culture experiments, suggesting that the oviductal stroma contains multiple cell populations preferentially regulating or modulating specific cell populations of the epithelium via diffusible factors.
A new species of Doryporella, D. smirnovi sp. nov. is described from the area of the Commander Islands. Inclusion of this species in a revised phylogenetic analysis of Doryporella and its relatives permits the recognition of a clade comprising Doryporella and Doryporellina. This clade is accorded family-level status as the Doryporellidae fam. nov., thereby removing Doryporella (and Doryporellina) from the large and paraphyletic Calloporidae.
Five typhloplanoids from the Australian East Coast are reported, three of them new to science. Two taxa are members of Promesostomidae: Vauclusia conica n.g. n.sp., characterised by a cone-shaped stylet, the presence of a female bursa and a very long, partially-swollen female duct; Brinkmanniella australiensis n.sp. has a funnel-shaped stylet with a smooth distal tip. Pilamonila bimascula n.g. n.sp. is a representative of the Solenopharyngidae, characterised by a stylet within a cirrus. The known species found are Ceratopera axi and Ptychopera scutulifer.
The family status of the genus Nephila, which belongs to Tetragnathidae currently but Araneidae formerly, was reexamined based on molecular phylogenetic analyses. In the present study, 12S and 18S rRNA gene fragments of eight species of spiders were amplified and sequenced. In addition, 3′-end partial cDNA of major ampullate spidroin-1 (MaSp1) gene of Argiope amoena was cloned and sequenced, and the 3′-end non-repetitive region's cDNA sequence of MaSp1 gene and the predicted amino acid sequence of C-terminal non-repetitive region of MaSp1 were aligned with some previously known sequences. The resulting phylogeny showed that Araneidae and Tetragnathidae are not a sister group in the superfamily Araneoidea, and the genus Nephila is closer to the genera of the family Araneidae rather than to those of Tetragnathidae. We suggest that the genus Nephila should be transferred back to Araneidae. Or the subfamily Nephilinae might be elevated to family level after it was redefined and redelimited. Furthermore, the study showed that 3′-end non-repetitive region's cDNA sequence of MaSp1 gene and C-terminal non-repetitive region's amino acid sequence of MaSp1 are useful molecular markers for phylogenetic analysis of spiders.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere