Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The molecular basis of the circadian clock is an autoregulatory feedback loop in which the PAS domain-containing protein PERIOD periodically inhibits its own transcription. In the present study on PERIOD of the silk moth Bombyx mori, we have cloned two distinct period mRNA homologues with different PAS domain sequences either with or without the pentapeptide GTQEK. A period cDNA fragment first amplified by PCR exhibited a 15 bp-deleted nucleotide sequence in the PAS domain, compared with the database sequence. A possible alternative splicing mechanism was examined by PCR analyses, and a 15 bp-inserted clone was also amplified. The entire sequences of these period α and period β isoforms were then determined by the 3′ and 5′ RACE methods. Isoform period α consists of a 3,324 bp oligonucleotide encoding 1,108 amino acid residues, whereas isoform period β comprises 3,309 bp corresponding to 1,103 amino acids. Isoforms period α and period β were found to be exactly identical except for the 15 bp deletion/insertion site. Such a pair of isoforms with a deletion/insertion sequence, namely two splice variants, has previously been reported only for the PERIOD proteins of the two honeybees, Apis mellifera and A. cerana. The occurrence of an alternative splicing mechanism in the B. mori period gene was hypothesized based on the genome structure recently clarified. Bombyx mori PERIOD α and β proteins are the isomers that reveal firstly the different PAS domain sequences.
Developmental changes in dopamine modulation of the heart were examined in the isopod crustacean Ligia exotica. The Ligia cardiac pacemaker is transferred from the myocardium to the cardiac ganglion during juvenile development and the heartbeat changes from myogenic to neurogenic. In the myogenic heart of early juveniles, dopamine affected the myocardium and caused a decrease in the frequency and an increase in the duration of the myocardial action potential, resulting in negative chronotropic (decrease in beat frequency) and positive inotropic (increase in contractile force) effects on the heart. Contrastingly, in the heart of immature adults just after juvenile development, dopamine caused effects of adult type, positive chronotropic and positive inotropic effects on the heart affecting the cardiac ganglion and myocardium. During the middle and late juvenile stages, dopamine caused individually a negative or a positive chronotropic effect on the heart. These results suggest that the chronotropic effect of dopamine on the Ligia heart is reversed from negative to positive in association with the cardiac pacemaker transfer from the myocardium to the cardiac ganglion during juvenile development.
A space experiment aimed at closely observing the development and swimming activity of medaka fry under microgravity was carried out as a part of the S*T*A*R*S Program, a space shuttle mission, in STS-107 in January 2003. Four eggs laid on earth in an artificially controlled environment were put in a container with a functionally closed ecological system and launched on the Space Shuttle Columbia. Each egg was held in place by a strip of Velcro in the container to be individually monitored by closeup CCD cameras. In the control experiment, four eggs prepared using the same experimental set-up remained on the ground. There was no appreciable difference in the time course of development between space- and ground-based embryos. In the ground experiment, embryos were observed to rotate in place enclosed with the egg membrane, whereas those in the flight unit did not rotate. One of the four eggs hatched on the 8th day after being launched into space. All four eggs hatched in the ground unit. The fry hatched in space was mostly motionless, but with occasional control of its posture with respect to references in the experimental chamber. The fry hatched on ground were observed to move actively, controlling their posture with respect to the gravity vector. These findings suggest that the absence of gravity affects the initiation process of motility of embryos and hatched fry.
In response to an air puff stimulus, intact crickets, Gryllus bimaculatus, make an escape almost 180° opposite to the stimulus source. In order to verify our previous hypothesis that a self-stimulation of the wind-sensory system is necessary for a compensational recovery of the escape direction (behavioral compensation) in unilaterally cercus-ablated crickets, we investigated the relationship between the conditions of rearing after a unilateral cercal ablation and the degree of behavioral compensation. A unilaterally cercus-ablated cricket reared in a large cage to permit free locomotion showed a significantly higher degree of recovery of escape direction compared with those reared under restrained conditions in a small glass vial. However, the degree of behavioral compensation in a cricket reared alone in a large cage was smaller than that of crickets reared in a cage of the same size with 5–6 other cercus-ablated crickets. Mutual stimulation possibly increased the extent of locomotion of crickets reared in a group and improved the degree of compensational recovery of the escape direction. To ascertain this, the distance a cricket moved during the recovery period was associated with the degree of compensational change of the escape direction. The result suggests that the degree of compensation of the escape direction clearly depended on the distance walked by the crickets. The compensation seemed not to be caused by other factors such as chemical ones in the case of group rearing because forced locomotion induced by touch stimulation on the body surface was solely effective in improving the escape direction.
In stockbreeding, there are indications that behavioral traits of livestock have an effect on breeding and production. If the variation in individual behavior is related to that in neurotransmitter-related genes such as in humans, it would be possible to breed pedigrees composed of individuals having behavioral traits that are useful to production and breeding using selection based on genotypes. In this study, we investigated the exon I region of dopamine receptor D4 (DRD4), in which variation is related to psychiatric disorder in humans, in major poultry species namely Japanese quail (Coturnix japonica), chicken (Gallus gallus), ring-necked pheasant (Phasianus colchicus) and helmeted guinea fowl (Numida melea-gris). Furthermore, we investigated Japanese cormorant (Phalacrocorax capillatus) and Japanese jungle crow (Corvus macrorhynchos) as an out-group. In these species of birds, the repeat of proline was identified in the region corresponding to the human polymorphic region. The repeat number was 9 in Japanese quail, ring-necked pheasant and Japanese cormorant; 12 in helmeted guinea fowl; and 3 in Japanese jungle crow. However, no polymorphism was found in these species. In contrast, polymorphism was observed in chicken and two alleles with 8 and 9 repeats were identified. Although 9 repeats (allele 9) were predominant in most chicken breeds, Black Minorca had only 8 repeats (allele 8). Intra-breed polymorphism was found in 6 out of 12 breeds, and two alleles (alleles 8 and 9) were detected in these breeds. This polymorphism, which is the first to be reported on a neurotransmitter-related gene in birds, would contribute significant information for elucidation of differences in behavioral traits in chicken breeds.
Assessing the impact of forest management on bat communities requires a reliable method for measuring patterns of habitat use by individual species. A measure of activity can be obtained by monitoring echolocation calls, but identification of species is not always straightforward. We assess the feasibility of using analysis of time-expanded echolocation calls to identify free-flying bats in the Tomakomai Experimental Forest of Hokkaido University, Hokkaido, northern Japan. Echolocation calls of eight bat species were recorded in one or more of three conditions: from hand-released individuals, from bats flying in a confined space and from bats emerging from their roost. Sonograms of 171 calls from 8 bat species were analyzed. These calls could be categorized into 3 types according to their structure: FM/CF/FM type (Rhinolophus ferrumequinum), FM types (Murina leucogaster, Murina ussuriensis, Myotis macrodactylus and Myotis ikonnikovi) and FM/QCF types (Eptesicus nilssonii, Vespertilio superans and Nyctalus aviator). Sonograms of the calls of R. ferrumequinum could easily be distinguished from those of all other species by eye. For the remaining calls, seven parameters (measures of frequency, duration and inter-call interval) were examined using discriminant function analysis, and 92% of calls were correctly classified to species. For each species, at least 80% of calls were correctly classified. We conclude that analysis of echolocation calls is a viable method for distinguishing between species of bats in the Tomakomai Experimental Forest, and that this approach could be applied to examine species differences in patterns of habitat-use within the forest.
A new species of semiterrestrial eutardigrade, Hypsibius stiliferus, is described from Sakhalin Island, Far East Russia. The new species is distinguished from its congeners by having an irregular, polygonal or subtriangular dorsal sculpture, which increases in size posteriorly, two granular macroplacoids, and a cuticular bar near the base of posterior claw 4, and by lacking a microplacoid and septulum. It is currently known from its type locality and several other localities in northern and southern Sakhalin Island. This is the first report concerning tardigrades from Sakhalin Island.
The type specimen of Myotis abei YOSHIKURA, 1944 was examined and compared with species of subgenera Leuconoe and Selysius from Japan and adjacent territories. The analysis of external characters and measurements indicated that M. abei should be recognised as a junior synonym of Myotis daubentoni (KUHL, 1817).
We have previously shown that the systemic injection of sodium tungstate, a protein-tyrosine phosphatase (PTPase) inhibitor, to pupae immediately after pupation efficiently produces characteristic color-pattern modifications on the wings of many species of butterflies including Vanessa indica and Cynthia cardui. In these species, the black spots reduced in size in response to the treatment. Similar modifications are occasionally seen in the field-caught aberrant individuals. Exceptionally, however, a C. cardui individual with enlarged black spots (“reversed” modification pattern) has been reported. Here we show that these modified patterns of V. indica and C. cardui are quite similar to the normal color-patterns of other Vanessa species. V. indica with tungstate-induced modifications resembled V. tameamea, V. samani, and Bassaris itea, whereas V. dilecta, V. atalanta, and V. dejeanii are similar to the “reversed” individual. Most features seen in the experimentally-modified V. indica were observed throughout the fore- and hindwings of V. samani. In contrast, the experimentally-induced color-patterns of C. cardui did not parallel variation of Cynthia butterflies. Since it has been proposed that a hypothetical transduction pathway with a PTPase for the scale-cell differentiation globally coordinates the wing-wide color-patterns, our findings suggest that spontaneous mutations in genes in this hypothetical pathway might have played a major role in creating new color-patterns and species in the Vanessa genus but not in the Cynthia genus. This evolutionary mechanism may probably be shared more widely in Lepidoptera, although this would not be a sole determinant for the color-pattern development and evolution.
Previous allozymic studies have revealed that Korean wild populations of Oryzias latipes have differentiated regionally, and are composed of two distinct groups, the East Korean Population and the China-West Korean Population. Recently, mitochondrial DNA (mtDNA) sequencing and restriction fragment length polymorphism (RFLP) analyses have confirmed these two groups, and shown that the distribution ranges of the two groups overlap in western Korea. In order to describe the detailed distributions of the two groups and the gene flow between them, genotypes of 13 allozymic loci were determined in 444 specimens from 96 localities in Korea. The two major groups were supported by remarkable allele frequency differences at six diagnostic loci: ACP*, AMY*, CK-A*, LDH-A*, PGM* and TF*. Individuals with the typical “eastern” genotype were mainly distributed in eastern and southern areas. In contrast, fish with the “western” genotype were predominant in the western area, and were further divided into two subgroups (the Han River and Geum River Subpopulations) by unique alleles at the ADH* locus. In the western coast, two distinct (eastern and western) genotypes were distributed in a mosaic fashion. This distribution pattern was identical to those from mtDNA analyses. Although the distribution patterns of the alleles at three loci (GPI-A*, LDH-C* and SOD*) showed introgressive conditions between the two groups, each population was nearly fixed as either the eastern or western genotype at all six diagnostic loci despite the proximity among samples. Therefore, it is suggested that some reproductive isolation mechanisms exist between the two groups in natural habitats.
We investigated genetic diversity and differentiation of the Pacific white-sided dolphin (Lagenorhynchus obliquidens) in Japanese coastal waters and offshore North Pacific by analyzing mitochondrial DNA and nuclear microsatellite variation. A total of 519 bp of the mitochondrial control region was sequenced and five microsatellite locus were genotyped for 59 individuals. A high level of haplotypic diversity (h=96.1%), moderate level of nucleotide diversity (π=1.65%) and average expected heterozygosity (HE=0.66–0.76) were within an extent of those reported for other odontocetes. Consistent genetic difference between the samples from Japanese coastal Pacific-Sea of Japan and offshore North Pacific was indicated by analyses of molecular variance (AMOVAs) based on mtDNA and microsatellite variations, comparison of genetic variabilities, and geographical distributions of mtDNA haplotypes and microsatellite alleles. This result suggests that Pacific white-sided dolphins in each of the above two areas belong to different populations between which gene flow has been severely restricted. The low genetic diversity and mtDNA genealogy of the population in Japanese coastal waters suggest that it originated from a small population that colonized the Sea of Japan or that experienced population reduction when this Sea was isolated from the North Pacific during a glacial period in the Late Pleistocene.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere