Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Germ cells, represented by male sperm and female eggs, are specialized cells that transmit genetic material from one generation to the next during sexual reproduction. The mechanism by which multicellular organisms achieve the proper separation of germ cells and somatic cells is one of the longest standing issues in developmental biology. In many animal groups, a specialized portion of the egg cytoplasm, or germ plasm, is inherited by the cell lineage that gives rise to the germ cells (germline). Germ plasm contains maternal factors that are sufficient for germline formation. In the fruit fly, Drosophila, germ plasm is referred to as polar plasm and is distinguished histologically by the presence of polar granules, which act as a repository for the maternal factors required for germline formation. Molecular screens have so far identified several of these factors that are enriched in the polar plasm. This article focuses on the molecular functions of two such factors in Drosophila, mitochondrial ribosomal RNAs and Nanos protein, which are required for the formation and differentiation of the germline progenitors, respectively.
ADF/cofilin is a phosphorylation-regulated protein essential for actin filament dynamics in cells. Here, we cloned two cDNAs encoding Xenopus ADF/cofilin (XAC)-specific phosphatase, slingshot (XSSH), one of which contains an extra 15 nucleotides in a coding sequence of the other, possibly generated by alternative splicing. Whole mount in situ hybridization showed XSSH transcripts in the blastopore lip and sensorial ectoderm at stage 11, and subsequently localized to developing brain, branchial arches, developing retina, otic vesicle, cement gland, and spinal chord in neurula to tailbud embryos. Immunostaining of animal-vegetal sections of gastrula embryos demonstrated that both XAC and XSSH proteins are predominant in ectodermal and involuting mesodermal cells. Microinjection of either a wild type (thus induces overexpression) or a phosphatase-defective mutant (functions as dominantly negative form) resulted in defects in gastrulation, and often generated the spina bifida phenotype with reduced head structures. Interestingly, the ratio of phosphorylated XAC to dephosphorylated XAC markedly increased from the early gastrula stage (stage 10.5), although the amount of XSSH protein markedly increased from this stage. These results suggest that gastrulation movement requires ADF/cofilin activity through dynamic regulation of its phosphorylation state.
ADF/cofilin is a key regulator for actin dynamics during cytokinesis. Its activity is suppressed by phosphorylation and reactivated by dephosphorylation. Little is known, however, about regulatory mechanisms of ADF/cofilin function during formation of contractile ring actin filaments. Using Xenopus cycling extracts, we found that ADF/cofilin was dephosphorylated at prophase and telophase. In addition, constitutively active Rho GTPase induced dephosphorylation of ADF/cofilin in the egg extracts. This dephosphorylation was inhibited by Na3VO4 but not by other conventional phosphatase-inhibitors. We cloned a Xenopus homologue of Slingshot phosphatase (XSSH), originally identified in Drosophila and human as an ADF/cofilin phosphatase, and raised antibody specific for the catalytic domain of XSSH. This inhibitory antibody significantly suppressed the Rho-induced dephosphorylation of ADF/cofilin in extracts, suggesting that the dephosphorylation at telophase is dependent on XSSH. XSSH bound to actin filaments with a dissociation constant of 0.4 μM, and the ADF/cofilin phosphatase activity was increased in the presence of F-actin. When latrunculin A, a G-actin-sequestering drug, was added to extracts, both Rho-induced actin polymerization and dephosphorylation of ADF/cofilin were markedly inhibited. Jasplakinolide, an actin-stabilizing drug, alone induced actin polymerization in the extracts and lead to dephosphorylation of ADF/cofilin. These results suggest that Rho-induced dephosphorylation of ADF/cofilin is dependent on the XSSH activation that is caused by increase in the amount of F-actin induced by Rho signaling. XSSH colocalized with both actin filaments and ADF/cofilin in the actin patches formed on the surface of the early cleavage furrow. Injection of inhibitory antibody blocked cleavage of blastomeres. Thus, XSSH may reorganize actin filaments through dephosphorylation and reactivation of ADF/cofilin at early stage of contractile ring formation.
Medaka, Oryzias latipes, has a firm XX-XY sex-determining system with the sex-determining gene, DMY, on the Y chromosome. However, previous studies have suggested that high water temperature might affect sex determination in Medaka. In the present study, the influence of high water temperature on sex reversal was examined. Fertilized eggs of two inbred strains of Medaka were developed at high water temperature (32°C) until hatching. The hatched fry were kept at normal water temperatures (27°C) until adulthood, and the phenotypic and genotypic sex was examined. As a result, 24% (N=105) and 50% (N=36) of XX fish developed a male phenotype in the Hd-rR and HNI inbred strains, respectively. These XX sex-reversed males had a normal testis and were fully fertile. On the other hand, all XY fish were male in the both strains. These results demonstrate that high water temperatures can induce XX sex reversal and that elevated water temperatures during the embryonic stage is a simple and useful method for getting XX males in Medaka.
Males of Chrysozephyrus smaragdinus were active from late morning to late afternoon, during which they showed territorial behavior, perhaps for mating. The territorial male stayed in a particular area and occasionally flew around it, referred to hereafter as the inspection area. When other male intruded into this area, the territorial male rushed to him. Then, they engaged in a circling flight regarded as a “war of attrition”. During this flight, the two males sometimes strayed far away from the territory. After the circling flight, the resident returned to his territory in almost all cases (98%). Despite such intrusions, many residents defended their territory for several successive days. This suggests strongly the “effect of prior residence”. We recorded the circling flights with a high-speed video camera, and confirmed that the male that ceased the circling flight first was the loser. This finding gave some validity to consider circling flight as wars of attrition. In a few cases, the territorial male mated with a female that came to the territory. These once mated males held the territory no longer, suggesting that mating experience should restrict the next mating opportunity in this species.
The novel antigen K114 (AgK114) has been previously identified in normal hamster skin, and its expression has been up-regulated accompanying tissue damages of the skin, although there is no information on its biological functions. To determine the physiological role of AgK114, we prepared anti-mouse AgK114 monoclonal antibody and studied its tissue distribution in healthy adult mice by immunocytochemistry. A widespread and unique expression of AgK114 peptide was found in the selected organs of various systems (hair follicle cells and sebaceous gland of skin, ciliated epithelial cells of trachea and bronchial tube, striated portion of submandibular gland, distal convoluted tubule cells of kidney, ciliated epithelial cells of oviduct, medulla of adrenal gland and anterior lobe of pituitary gland). Interestingly, dual expression of AgK114 peptide and growth hormone in somatotrophs was found in anterior lobe of pituitary gland by double immunocytochemistry. AgK114 peptide was expressed widely in many regionally well-defined cellular systems in various peripheral tissues, suggesting that AgK114 peptide may have some roles of physiological functions in these organs. The data from our current study have provided a rationale for further studies of functional roles of AgK114 peptide in a variety of organs or tissues under physiological conditions.
Interleukin-18 (IL-18) belongs to the interleukin-1 family and was identified as an interferon-γ inducing factor. We investigated IL-18 mRNA-expressing cells in the mouse uterus. By RNase protection assay, IL-18 mRNA and α subunit of IL-18 receptor mRNA were detected in the uterus. In the uterus, IL-18 mRNA levels increased during sexual maturation. In situ hybridization analysis demonstrated IL-18 mRNA-expressing cells in the mouse uterus of different ages. At 21 days of age, IL-18 mRNA-expressing cells were detected in the luminal epithelial cells and stromal cells although the IL-18 mRNA signal was weak. At 42 days of age, IL-18 mRNA signal was mainly detected in the stromal cells located near the myometrium, and in some of the luminal and glandular epithelial cells. In the uterus of 63-day-old adult mice, a strong hybridization signal for IL-18 mRNA was detected at estrus, but was weak at diestrus. IL-18 mRNA was mainly detected in the glandular epithelial cells and stromal cells. The effect of estradiol-17β (E2) on IL-18 mRNA-expressing cells in the uterus was examined in ovariectomized mice. In oil-treated mice IL-18 mRNA signal was localized in luminal epithelial cells and stromal cells, while in E2-treated mice IL-18 mRNA signal was localized in stromal cells alone. These results suggest that the mouse uterus has an IL-18 system, and IL-18 exerts a physiological role within the uterus in a paracrine manner, and that IL-18 gene expression is regulated by estrogen.
Insulin-like growth factor-I (IGF-I) gene generates several IGF-I mRNA variants by alternative splicing. Two promoters are present in mouse IGF-I gene. Each promoter encodes two IGF-I mRNA variants (IGF-IA and IGF-IB mRNAs). Variants differ by the presence (IGF-IB) or absence (IGF-IA) of a 52-bp insert in the E domain-coding region. Functional differences among IGF-I mRNAs, and regulatory mechanisms for alternative splicing of IGF-I mRNA are not yet known. We analyzed the expression of mouse IGF-IA and IGF-IB mRNAs using SYBR Green real-time RT-PCR. In the liver, IGF-I mRNA expression increased from 10 days of age to 45 days. In the uterus and ovary, IGF-I mRNA expression increased from 21 days of age, and then decreased at 45 days. In the kidney, IGF-I mRNA expression decreased from 10 days of age. IGF-IA mRNA levels were higher than IGF-IB mRNA levels in all organs examined. Estradiol-17β (E2) treatment in ovariectomized mice increased uterine IGF-IA and IGF-IB mRNA levels from 3 hr after injection, and highest levels for both mRNAs were detected at 6 hr, and relative increase was greater for IGF-IB mRNA than for IGF-IA mRNA. These results suggest that expression of IGF-I mRNA variants is regulated in organ-specific and age-dependent manners, and estrogen is involved in the change of IGF-I mRNA variant expression.
A time-resolved fluoroimmunoassay system (TR-FIA) for measuring flounder insulin-like growth factor-I (IGF-I) was developed using biotinylated flounder IGF-I, anti-fish IGF-I antiserum and europium-avidin conjugate. The detection limit per well was <5 pg/well corresponding to <0.5 ng/ml in a basic procedure for sample of 10 μl/well and to <0.08 ng/ml in a procedure modified for high volume samples (up to 70 μl/well). Specificity of the assay was validated using various IGF-Is and insulins. All IGFs except seabream IGF-I showed very low or no crossreactivity. Binding inhibition curves for flounder and seabream IGF-Is were completely identical to each other. Intra- and interassay variations ranged from coefficients of variations of 3.9% to 7.2%. Recovery tests using barfin flounder plasma varied from 82.7 to 101.6% in the added range from 20 to 160 ng/ml. This assay system was applied for measuring total plasma IGF-I in barfin flounder injected porcine growth hormone (GH). A group injected with GH at the dose of 0.05 IU/gBW showed a significant increase of total plasma IGF-I compared with those of albumin-injected (control) and initial groups. In addition, I was able to substitute time-resolved fluorometric detection in this assay system with enzymatic fluorometric detection (FIA). Binding inhibition curve for flounder IGF-I in this substituted assay system showed equal performance with that of the TR-FIA system. Correlation of IGF-I levels between TR-FIA and FIA was high (r2=0.957) in plasma samples from barfin flounders in various physiological conditions. Thus, the present study shows precision and efficiency of two non-radioisotopic immunoassay systems for measuring flounder IGF-I.
Two fragments of mitochondrial DNA (mtDNA) of the cytochrome b gene (137 bp and 167 bp) were successfully isolated and sequenced from antlers and bones of five specimens of the Giant Deer (Megaloceros giganteus) to examine the phylogenetic position of Megaloceros giganteus within the family Cervidae. This is the first report on ancient DNA (aDNA) sequences from Megaloceros giganteus. A phylogenetic analysis based on parameter-rich models describes the evolutionary relationships between five individuals of fossil Megaloceros giganteus and 37 individuals of 11 extant species of the family Cervidae. The results support a “Cervus–Megaloceros” clade. The phylogenetic positions of sympatric Megaloceros and Cervus elaphus specimens in particular indicate either that the Megaloceros mtDNA gene pool did not evolve for a substantial time period as an entity distinct from Cervus elaphus until its extinction, or that Megaloceros contributed mtDNA to Cervus elaphus or vice versa. The results of this study allow the conclusion that the European Megaloceros giganteus is more related to its modern regional counterparts of the species of Cervus elaphus than recent claims have suggested.
Sry (sex-determining region on the Y chromosome) is required for testicular differentiation in mammals. In addition to Sry, other genes such as WT1, Fgf9, Dax1, Dmrt1 and Sox9 are widely accepted to be involved in the sex determination in vertebrates. However, the roles of these genes during sex determination still remain unclear in amphibians. This study was undertaken to examine the expression of WT1 and Fgf9 in the developing gonad of amphibians. We first isolated the WT1 cDNA from the frog Rana rugosa. Like WT1 in mice, R. rugosa WT1 showed 2 isoforms; i.e., one had an additional 3 amino acids, KTS, included between the third and fourth zinc fingers. However, 17 amino acids in exon 5 of mammalian WT1 could not be found in R. rugosa WT1, which is also the case in turtle and chicken. The mRNA of both isoforms ( KTS, –KTS) was detected in the lung, kidney and testis, but not in the ovary and muscle of adult frogs. The 2 isoforms were expressed first in the embryos at stage 23. Thereafter, the expressions remained constant in the gonad attached to mesonephros of both sexes during sex determination. We next isolated the R. rugosaFgf9 cDNA encoding 208 amino acids. The amino acid sequence of Fgf9 had similarity greater than 92% with chicken, mouse and human Fgf9s, suggesting that Fgf9 is highly conserved among vertebrate classes. Fgf9 was expressed in the ovary of an adult frog strongly, but in the lung weakly. In contrast, the Fgf9 mRNA was hardly detected in the kidney, testis and muscle. Moreover, Fgf9 did not show a sexually dimorphic expression pattern during sex determination in R. rugosa. The results, taken together, suggest that both WT1 and Fgf9 are expressed in the indifferent gonad prior to sex determination without any difference in the expression between males and females. Thus, it seems unlikely that they are a key factor to initiate the divergence leading to testicular or ovarian differentiation in R. rugosa.
Tischeria urticicolella (Ghesquière, 1940) – a poorly studied species from the Democratic Republic of Congo and formerly known as a member of the Gracillariidae – is redescribed and reported as belonging to the Tischeriidae for the first time. The external features and male genitalia are figured and described. A checklist and distribution map for all 18 Tischeriidae species currently recorded from Africa (including the Canary Islands) are given.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere