Liang-Yu Pan, Wen-Neng Chen, Shau-Ting Chiu, Anantanarayanan Raman, Tung-Chuang Chiang, Man-Miao Yang
Zoological Science 32 (3), 314-321, (1 June 2015) https://doi.org/10.2108/zs140244
KEYWORDS: Daphnephila, nutrition sink ability, Machilus thunbergii, gall shape, Fungi
Mature galls induced by Daphnephila truncicola, D. taiwanensis, D. sueyenae, D. stenocalia, and D. ornithocephala on Machilus thunbergii in northern Taiwan were examined to verify the dictum that the morphology of galls is an expression of the extended phenotype of the respective gall-inducing insect. Based on their length-width ratio, the materials were grouped into either fleshy (those induced by D. taiwanensis and D. sueyenae) or slim galls (those induced by D. truncicola, D. stenocalia, and D. ornithocephala). Stem galls induced by D. truncicola showed an energy level of 0.0178 kJ/g. Among leaf galls, the greatest energy level was in the one induced by D. stenocalia (0.0193 kJ/g), followed by D. sueyenae (0.0192 kJ/g), D. taiwanensis (0.0189 kJ/g), and D. ornithocephala (0.0160 kJ/g). The numbers of reserve and nutritive cell layers in galls were greater in the stem galls induced by D. truncicola, similar to those in the fleshy leaf galls, than in the slim leaf galls. Based on the fungal taxa isolated from the larval chambers and considering the similarities and divergences among gall characteristics, the galls induced by D. truncicola and D. taiwanensis clustered into one, whereas those of D. sueyenae aligned with the ‘D. stenocalia—D. ornithocephala’ cluster. The present study verified that shapes, structure, nutritive tissues, energy levels, and multiple coexisting fungal taxa within galls reinforce that they are extended phenotypes of the respective gall-inducing Daphnephila species and they represent adaptive evolution of Daphnephila on M. thunbergii.