Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The cheilostome bryozoan Cauloramphus magnus is common in the rocky intertidal habitat from southeastern Alaska to northern Japan. We examined its phylogeography by analyzing 576 bp of the mitochondrial COI (cox1) gene sequenced for 298 colonies from 16 localities in northern Japan. A maximum-likelihood phylogeny detected three main clades (A, B, C). Clades A and B occurred throughout the study area but differed in frequency, haplotype diversity, and haplotype distribution; each resolved into three divergent subclades (AI–III, BI–III). Clade A shared none among 15 haplotypes between the Pacific and Sea of Japan sides of Hokkaido. In contrast, Clade B (29 haplotypes) was thrice as common as Clade A among samples, with haplotype B28 common on both sides. Divergent Clade C (nine haplotypes) was detected only at Rumoi. K2P divergences of 12.3–28.3% among Clades A–C suggest these are distinct biological species, a conclusion supported by different inferred evolutionary histories. A bPTP species delimitation analysis indicated nine phylogenetic species among the sequences included in our phylogeny (AI–III, BI–III, C, and one specimen each from Alaska and the Commander Islands), with K2P divergences of 3.9–6.5% among subclades in A or B. Statistical and principal components analyses suggested weak morphological differentiation between Clades A + B and C, although overlapping ranges of measurements preclude identification to clade; these three clades are morphologically cryptic. For taxonomy, we suggest retaining the name C. magnus for lineages within this species complex across its range, followed by a clade designation, if known.
As a contribution to improving management of the Japanese wild boar (Sus scrofa leucomystax), which has recently expanded its range and is having some negative effects on the ecosystem, we conducted a landscape genetic study using individual-based genetic analysis and multiple landscape elements to elucidate its dispersal patterns in the early stage of its expansion. Microsatellite DNA analysis of Japanese wild boars in the Hokuriku region of Japan revealed the existence of two ancestral genetic clusters, that they had migrated via different pathways, and that they were inadequately admixed. We also inferred the most suitable habitats for Japanese wild boar using MaxEnt and concluded that lower elevation and snowfall may favor the occurrence of wild boar individuals. Landscape genetic analysis indicated regional differences in Japanese wild boar dispersal patterns, according to the spatial heterogeneity of genetic features and landscape elements. On the western side of the study area, where individuals with a high frequency of one of two ancestral clusters were more abundant, significant effects of isolation by distance and resistance due to the above two landscape factors were detected, suggesting unidirectional dispersion influenced by the alpine landscape. In contrast, on the eastern side, there was indication of resistance to dispersal of individuals predominantly possessing another ancestral cluster, suggesting the influence of irregularly arranged suitable habitats due to the complexity of the mountainous terrain. Based on our findings, we conclude that Japanese wild boar dispersal patterns may be influenced by landscape elements, such as alpine mountains.
Tachaea chinensis is a temporary ectoparasite infesting freshwater shrimps and prawns in eastern Asia. This study investigated the host size selection by T. chinensis across common freshwater shrimps under laboratory conditions. A total of 70 isopods were allowed to select between host shrimps of different size and different species in pairwise selection experiments. In treatments involving different sizes of the same host species, T. chinensis tended to select the medium host option in all of the four treatments. Similarly, T. chinensis demonstrated greater preference towards medium host (90%) when provided with mixed host options (medium Palaemon paucidens vs small Neocaridina spp.). However, despite the increase in the infestation proportion on medium Neocaridina spp., the isopod significantly selected the small P. paucidens when provided with a choice between medium Neocaridina spp. and small P. paucidens. In manca stage (1 day after hatch) T. chinensis treatment, the isopods showed no specific preference between large and medium Neocaridina spp. These results suggest that T. chinensis is likely to show size specificity according to the developmental stage, a size specificity that ultimately ensures adequate space for isopods' growth while maintaining a minimum risk of predation.
Different crustacean species can differ in their response to light. In Tanaidacea, a small group of aquatic, benthic crustaceans, previous studies suggested that several species may be positively phototactic based on their attraction to nocturnal light traps, but no experimental investigations of phototaxis had been conducted on this group. Here we show experimentally that two species in the genus Zeuxo are phototactic but exhibit opposite reactions to light; Zeuxo ezoensis, which inhabits the blades and stipes of seaweeds, was positively phototactic, whereas Zeuxo molybi, which inhabits muddy sediments overlying bedrock, was negatively phototactic. This differential response may reflect differences in photoenvironment between these species' microhabitats.
Two cytochrome P450 genes homologous to human CYP7A1 and CYP27A1 were cloned from the non-parasitic Japanese lamprey Lethenteron reissneri. Lamprey cyp7a1 mRNA had varied expression levels among individuals: about four orders of magnitude differences in larval liver and nearly three orders of magnitude differences in male adult liver. Overexpressed Cyp7a1 protein tagged with green fluorescent protein (GFP) was localized to the endoplasmic reticulum. Lamprey cyp27a1 mRNA had relatively constant expression levels: within two orders of magnitude differences in larvae and adult liver and intestine. GFP-tagged Cyp27a1 protein was localized to mitochondria. The expression profiles of lamprey cyp7a1 and cyp27a1 genes and the cellular localizations of their products were in good agreement with their counterparts in mammals, where these two P450s catalyze initial hydroxylation reactions of cholesterol in classical and alternative pathways of bile acid synthesis, respectively. The cyp7a1 mRNA levels in adult male liver showed significant negative correlations to both body weight and total length of the animal, implying the involvement of the gene in the production of female-attractive pheromones in sexually matured male livers. The lamprey Cyp7a1 contains a long extension of 116 amino acids between helices D and E of the protein. Possible roles of this extension in regulating the enzymatic activity of lamprey Cyp7a1 are discussed.
Males of the small cabbage butterfly Pieris rapae crucivora have two dark or melanic spots in the central white area of each dorsal forewing, an anterior spot (aS) and a posterior spot (pS). We used characteristics of the size distributions of these spots to infer how selection has acted on them during their evolution. Our study reveals that the aS size distribution is normal while that of pS is very right-skewed. Moreover, aS size is larger and less variable than pS size. These results suggest that the aS has been under stabilizing selection while the pS has not. The context in which this selection is acting is not yet clear, nor is it clear why pS persists as a wing marking.
Mitochondrial genomes are used widely for the molecular phylogenetic analysis of animals. Although phylogenetic analyses based on the mitogenomes of brachyurans often yield well-resolved phylogenies, most interfamilial phylogenetic relationships in Thoracotremata remain unclear. We determined nine new mitogenomes of Thoracotremata, including mitogenomes of Camptandriidae (Deiratonotus japonicus), Dotillidae (Ilyoplax integra, Ilyoplax pusilla, and Tmethypocoelis choreutes), Macrophthalmidae (Ilyograpsus nodulosus), Pinnotheridae (Arcotheres sp. and Indopinnixa haematosticta), Plagusiidae (Guinusia dentipes), and Percnidae (Percnon planissimum). Interestingly, Percnon planissimum (Percnidae) was found to possess ≥ 19 repeated sequences in the control region. The gene orders of Il. nodulosus, Arcotheres sp., and In. haematosticta were revealed to be unique among thoracotreme crabs. Although the results of Bayesian and maximum likelihood (ML) phylogenetic analyses of three datasets were incongruent, highly supported clades (PP ≥ 0.99 or BS ≥ 99%) were not contradictory among the analyses. All analyses suggested the paraphyly of Grapsoidea and Ocypodoidea, corroborating the findings of previous studies based on molecular phylogenies of thoracotreme crabs. The phylogenetic positions of symbiotic thoracotreme crabs, Pinnotheridae and Cryptochiridae, were highly supported (Pinnotheridae + Ocypodidae and Cryptochiridae + Grapsidae, respectively) for the Bayesian analyses but not for the ML analyses. Analyses of more thoracotreme species' mitogenome sequences in additional studies will further strengthen the framework for thoracotreme evolution.
Frequent coral bleaching has drawn attention to the mechanisms of coral dinoflagellate endosymbiosis. Owing to the difficulty of rearing corals in the laboratory, model symbiosis systems are desired. The sea anemone Exaiptasia diaphana, hosting clade B1 of the genus Breviolum, has long been studied as a model system; however, a single species is insufficient for comparative studies and thus provides only limited resources for symbiosis research, especially regarding the specificity of host-symbiont associations. We established a clonal strain of the sea anemone Anthopleura atodai, whose symbiont was identified as a novel subclade of Symbiodinium (clade A) using a novel feeding method. We also developed a method to efficiently bleach various sea anemone species using a quinoclamine-based herbicide. Bleached A. atodai polyps were vital and able to reproduce asexually, exhibiting no signs of harmful effects of the drug treatment. Pilot studies have suggested that host-symbiont specificity is influenced by multiple steps differently in A. atodai and E. diaphana. RNAseq analyses of A. atodai showed that multiple NPC2 genes were expressed in the symbiotic state, which have been suggested to function in the transport of sterols from symbionts to host cells. These results reveal the usefulness of A. atodai in comparative studies of cnidarian-algal symbiosis.
There have been several records in the last 60 years for East Antarctica for Milnesium tardigradumDoyère, 1840 sensu lato, now considered a species complex. During the 56th Japanese Antarctic Research Expedition summer operation (2014–2015), a new tardigrade species in the genus MilnesiumDoyère, 1840 was found in an ice-free Innhovde area along Lützow-Holm Bay, Dronning Maud Land, East Antarctica. The new species has aberrant claws with four to seven points on each secondary claw branch, which distinguishes it from other Milnesium species. A male specimen was found in the population and evidence showed that an isolated adult female moulted twice without oviposition. This strongly suggested bisexual reproduction for this population. The new species, Milnesium rastrum sp. nov., is described with its phylogenetic position and a discussion on the reproductive strategies for the harsh environments.
We establish a new interstitial polyclad species, Theama japonica sp. nov., based on specimens collected from coarse-sandy habitats in three Japanese main islands (Hokkaido, Honshu, and Shikoku) along the coasts of the Pacific Ocean and the Sea of Japan. Theama japonica is characterized by i) two pairs of cerebral eyespots and four to six precerebral eyespots; ii) eosinophilic secretion glands distributed in the distal half of the inner ventral part of the prostatic vesicle; iii) a conical penis papilla, bent up dorsally, with a sclerotized inner wall; iv) the prostatic sheath with an inner angular fold on the dorso-distal side; and v) the external cilia longer dorsally than ventrally. Partial sequences of the cytochrome c oxidase subunit I (COI) gene from 20 specimens collected at eight localities along Japanese coasts represented 19 haplotypes. The uncorrected p-distances among these COI haplotypes fell within intraspecific variations observed in other polyclads. A network analysis based on these COI haplotypes suggested a geographically non-cohesive genetic structure of the species, possibly indicating the species' high dispersibility. Molecular phylogenetic analyses based on a concatenated dataset of 18S and 28S rDNA sequences showed T. japonica formed a clade with other Theama species. The resulting tree also indicates that our new species is more closely related to Theama sp. from Colombia than species from Panama and Croatia.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere