BioOne.org will be down briefly for maintenance on 17 December 2024 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
How to translate text using browser tools
1 November 2003 ON THE PERSISTENCE AND PERVASIVENESS OF A NEW MUTATION
Aurora GarcÍa-Dorado, Armando Caballero, James F. Crow
Author Affiliations +
Abstract

It has frequently been assumed that the persistence of a deleterious mutation (the average number of generations before its loss) and its pervasiveness (the average number of individuals carrying the gene before its loss) are equal. This is true for a particular simple, widely used infinite model, but this agreement is not general. If hs ≫ 1/(4Ne), where hs is the selective disadvantage of mutant heterozygotes and Ne is the effective population number, the contribution of homozygous mutants can be neglected and the simple approximate formula 1/hs gives the mean pervasiveness. But the expected persistence is usually much smaller, 2(loge(1/2hs) 1 − γ) where γ = 0.5772. For neutral mutations, the total number of heterozygotes until fixation or loss is often the quantity of interest, and its expected value is 2Ne, with remarkable generality for various population structures. In contrast, the number of generations until fixation or loss, 2(Ne/N)(1 loge2N), is much smaller than the total number of heterozygotes. In general the number of generations is less than the number of individuals.

Aurora GarcÍa-Dorado, Armando Caballero, and James F. Crow "ON THE PERSISTENCE AND PERVASIVENESS OF A NEW MUTATION," Evolution 57(11), 2644-2646, (1 November 2003). https://doi.org/10.1554/03-207
Received: 14 March 2003; Accepted: 18 June 2003; Published: 1 November 2003
JOURNAL ARTICLE
3 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

KEYWORDS
Deleterious mutations
finite population
fitness
partial dominance
time to extinction
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top