Angela Simms, Meaghan Scott, Simon Watson, Steve Leonard
Wildlife Research 46 (3), 247-255, (16 April 2019) https://doi.org/10.1071/WR18131
KEYWORDS: birds, ecology, mallee, mammals, reptiles
Context. After fire, immigration from outside burnt areas is important for the recovery of faunal communities. However, for recovery to occur, the matrix around the fire must support source populations of immigrants. Therefore, the landscape context of fires may be a critical determinant of the species pool available for (re)colonisation, hence post-fire community composition. Increasingly, fires occur in fragmented systems, and there is limited knowledge of how the surrounding landscape interacts with post-fire community recovery.
Aim. The present study aimed to examine how landscape context influences faunal communities after large wildfires.
Methods. Three reserves burnt by wildfire were examined ∼18 months before the study in the Mallee region of south-eastern Australia. In all cases the burnt area consisted of natural mallee woodland. Two fires occurred within a matrix of extensive natural vegetation, while the third fire burnt >80% of a reserve situated within a highly fragmented, largely agricultural landscape. Birds, reptiles and mammals were surveyed at 90 sites inside and outside the fire boundaries, and relationships of species occurrence to reserve location, burnt versus unburnt status and distance from fire edge were all examined.
Key results. Post-fire faunal communities reflected the species in the surrounding unburnt landscape. Notably, open habitat specialists, invasive species and species that can persist in small habitat patches were prominent within the fragmented system. Post-fire fauna communities were also influenced by variation of the natural vegetation surrounding the fire. The occurrence of species with low dispersal ability (i.e. reptiles) was influenced by local (patch scale) vegetation structure.
Conclusions. The landscape context of fires is a major driver of the composition of post-fire faunal communities. Our results highlight the potential loss of species sensitive to fragmentation from fire-prone natural vegetation within modified landscapes, and that a reduced pool of potential immigrants leads to ‘attenuated succession’, compromising recovery of the pre-fire community.
Implications. Post-fire colonists reflect the surrounding landscapes species pool, such that reserves surrounded by fragmented or otherwise low quality habitat are at risk of attenuated succession after fire. Landscape context should be incorporated into conservation planning in fire-prone ecosystems, including consideration of surrounding habitat quality and connectivity and protecting long unburnt vegetation.