Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Research and management attention on the impacts of the introduced domestic cat (Felis catus) on Australian fauna have focussed mainly on the feral population. Here, we summarise the evidence for impacts of predation by pet cats on Australian wildlife. We collate examples of local wildlife population decline and extirpation as a result, at least in part, of predation by pet cats. We assemble information across 66 studies of predation by pet cats worldwide (including 24 Australian studies) to estimate the predation toll of pet cats in Australia, plus the predation pressure per unit area in residential areas. We compared these estimates to those published for feral cats in Australia. The per capita kill rate of pet cats is 25% that of feral cats. However, pet cats live at much higher densities, so the predation rate of pets per square kilometre in residential areas is 28–52 times larger than predation rates by feral cats in natural environments, and 1.3–2.3 times greater than predation rates per km2 by feral cats living in urban areas. Pet cats kill introduced species more often than do feral cats living in natural environments, but, nonetheless, the toll of native animals killed per square kilometre by pet cats in residential areas is still much higher than the toll per square kilometre by feral cats. There is no evidence that pet cats exert significant control of introduced species. The high predation toll of pet cats in residential areas, the documented examples of declines and extirpations in populations of native species caused by pet cats, and potential pathways for other, indirect effects (e.g. from disease, landscapes of fear, ecological footprints), and the context of extraordinary impacts from feral cats on Australian fauna, together support a default position that pet cat impacts are serious and should be reduced. From a technical perspective, the pet cat impacts can be reduced more effectively and humanely than those of feral cats, while also enhancing pet cat welfare. We review the management options for reducing predation by pet cats, and discuss the opportunities and challenges for improved pet cat management and welfare.
Context Feral cats threaten wildlife conservation through a range of direct and indirect effects. However, most studies that have evaluated the impacts of feral cats on species of conservation significance have focussed on direct impacts such as predation; few studies have considered the indirect impacts of cat-borne disease. Toxoplasma gondii, a cat-borne parasite, causes both acute and latent disease in a range of wildlife species, and macropods are particularly susceptible. Kangaroo Island is Australia’s third largest island and supports a high density of feral cats and high seroprevalence of T. gondii in multiple species, relative to the mainland. This suggests that Kangaroo Island has a high environmental contamination with the parasite and a high risk of infection for other species.
Aims We aimed to describe T. gondii seroprevalence in culled and road-killed macropods, so as to assess the effects of island versus mainland location, sex, species and behaviour.
Methods Macropod sera were tested for T. gondii IgG antibodies using a commercially available modified agglutination test.
Key results The seroprevalence of T. gondii in culled western grey kangaroos (Macropus fuliginosus) was significantly higher on the island (20%, 11/54 positive) than on the mainland (0%, 0/61 positive). There was no difference in T. gondii seroprevalence between culled and road-killed (21%, 21/102 positive) kangaroos from the island. The seroprevalence of T. gondii was significantly higher in female (32%, 12/38 positive) than in male (13%, 8/60 positive) kangaroos, but we observed no sex effect in tammar wallabies (Macropus eugenii), and no effect of species.
Conclusions The higher T. gondii seroprevalence in insular macropods supports previous reports of higher T. gondii exposure in other Kangaroo Island fauna. The lack of difference in T. gondii seroprevalence between culled and road-killed kangaroos suggests that T. gondii-positive animals are not more vulnerable to road mortality, in contrast to that suggested previously.
Implications Our findings suggest greater potential adverse conservation impacts owing to toxoplasmosis on the island than on the mainland. In light of a recent study demonstrating higher cat abundance on the island than on the mainland, the higher observed T. gondii seroprevalence in insular macropods is likely to be a consequence of higher cat density.
Context Predation by feral cats (Felis catus) threatens a range of vertebrate species across Australia, and cat-free islands increasingly act as safe havens for biodiversity. A feral cat eradication program has begun on Kangaroo Island (4405 km2) in South Australia, and poison baiting is likely to be one of the main methods used.
Aims Here, we trial a non-toxic version of a cat bait, ‘Eradicat’, on western Kangaroo Island, to examine its potential impact on non-target species.
Methods Non-toxic baits containing the biomarker Rhodamine B were deployed across four sites in early August and late November in 2018, with bait take and consumption assessed both by remote cameras and by the presence of Rhodamine B in mammalian whisker samples taken post-baiting.
Key results Cats encountered baits on very few occasions and took a bait on only one occasion in August (<1% of 576 baits deployed). Non-target species accounted for over 99% of identifiable bait takes. In both seasons, >60% of all baits laid was taken by either the common brushtail possum (Trichosurus vulpecula), bush rat (Rattus fuscipes) or Australian raven (Corvus coronoides). In November, Rosenberg’s goanna (Varanus rosenbergi) and southern brown bandicoot (south-eastern subspecies; Isoodon obesulus obesulus), listed nationally as Endangered, also took baits (3% and 1% respectively). The Kangaroo Island dunnart (Sminthopsis fuliginosus aitkeni), listed nationally as endangered, approached a bait on only one occasion, but did not consume it. Evidence of bait consumption was visible in the whiskers of captured common brushtail possums (100% of post-baiting captured individuals in August, 80% in November), bush rats (59% in August and 50% in November), house mice (Mus musculus) (45% in November) and western pygmy-possums (Cercartetus concinnus) (33% in November).
Conclusions Although feral cat baiting has the potential to significantly benefit wildlife on Kangaroo Island, impacts on non-target species (particularly the bush rat and common brushtail possum) may be high.
Implications Alternative cat baits, such as those containing a toxin to which native species have a higher tolerance or that are less readily consumed by native wildlife, will be more appropriate.
Context To understand the ecological consequences of predator management, reliable and accurate methods are needed to survey and detect predators and the species with which they interact. Recently, poison baits have been developed specifically for lethal and broad-scale control of feral cats in Australia. However, the potential non-target effects of these baits on other predators, including native apex predators (dingoes), and, in turn, cascading effects on lower trophic levels (large herbivores), are poorly understood.
Aims We examined the effect that variation in camera trapping-survey design has on detecting dingoes, feral cats and macropodids, and how different habitat types affect species occurrences. We then examined how a feral cat poison baiting event influences the occupancy of these sympatric species.
Methods We deployed 80 remotely triggered camera traps over the 2410-km2 Matuwa Indigenous Protected Area, in the semiarid rangelands of Western Australia, and used single-season site-occupancy models to calculate detection probabilities and occupancy for our target species before and after baiting.
Key results Cameras placed on roads were ∼60 times more likely to detect dingoes and feral cats than were off-road cameras, whereas audio lures designed to attract feral cats had only a slight positive effect on detection for all target species. Habitat was a significant factor affecting the occupancy of dingoes and macropodids, but not feral cats, with both species being positively associated with open woodlands. Poison baiting to control feral cats did not significantly reduce their occupancy but did so for dingoes, whereas macropodid occupancy increased following baiting and reduced dingo occupancy.
Conclusions Camera traps on roads greatly increase the detection probabilities for predators, whereas audio lures appear to add little or no value to increasing detection for any of the species we targeted. Poison baiting of an invasive mesopredator appeared to negatively affect a non-target, native apex predator, and, in turn, may have resulted in increased activity of large herbivores.
Implications Management and monitoring of predators must pay careful attention to survey design, and lethal control of invasive mesopredators should be approached cautiously so as to avoid potential unintended negative ecological consequences (apex-predator suppression and herbivore release).
Context The success of conservation fences at protecting reintroduced populations of threatened mammals from introduced predators has prompted an increase in the number and extent of fenced exclosures. Excluding introduced species from within conservation fences could also benefit components of in situ faunal assemblages that are prey for introduced predators, such as reptiles and small mammals. Conversely, reintroduced mammals may compete with smaller mammals and reptiles for resources, or even prey on them.
Aims In a 10-year study from 2008, we examine how small terrestrial vertebrates respond to the exclusion of introduced predators, the feral cat (Felis catus) and red fox (Vulpes Vulpes), introduced herbivores and the reintroduction of regionally extinct mammal species.
Methods Differences in the yearly relative abundance of reptiles and mammals according to habitat type and whether sites were fenced or not, were tested using multivariate generalised linear models. Next, we calculated univariate P-values to identify individual species that showed significant relationships, positive and negative, with any of the explanatory variables.
Key results Total captures of reptiles were lower inside the conservation fence in all years, whereas total captures of small mammals were markedly higher inside the fenced area, notably in dasyurids.
Conclusion Our results showed that conservation fences can deliver benefits for some fauna (but not all) beyond facilitating the reintroduction of highly threatened mammals.
Implications Our results demonstrated the consequential impacts of introduced predators on the Australian small mammal fauna, and showed that predator-exclusion fences can be an effective conservation intervention for this guild.
J. C. Z. Woinarski, S. M. Legge, L. A. Woolley, R. Palmer, C. R. Dickman, J. Augusteyn, T. S. Doherty, G. Edwards, H. Geyle, H. McGregor, J. Riley, J. Turpin, B. P. Murphy
Context We recently estimated the numbers of reptiles, birds and mammals killed by cats (Felis catus) in Australia, with these assessments providing further evidence that cats have significant impacts on Australian wildlife. No previous studies have estimated the numbers of frogs killed by cats in Australia and there is limited comparable information from elsewhere in the world.
Aims We sought to (1) estimate the numbers of frogs killed by cats in Australia and (2) compile a list of Australian frog species known to be killed by cats.
Methods For feral cats, we estimated the number of frogs killed from information on their frequency of occurrence in 53 cat dietary studies (that examined stomach contents), the mean number of frogs in dietary samples that contained frogs, and the numbers of cats in Australia. We collated comparable information for take of frogs by pet cats, but the information base was far sparser.
Key results Frogs were far more likely to be reported in studies that sampled cat stomachs than cat scats. The mean frequency of occurrence of frogs in cat stomachs was 1.5%. The estimated annual per capita consumption by feral cats in Australia’s natural environments is 44 frogs, and, hence, the annual total take is estimated at 92 million frogs. The estimated annual per capita consumption by pet cats is 0.26 frogs, for a total annual kill of one million frogs by pet cats. Thirty native frog species (13% of the Australian frog fauna) are known to be killed by cats: this tally does not include any of the 51 threatened frog species, but this may simply be because no cat dietary studies have occurred within the small ranges typical of threatened frog species.
Conclusions The present study indicated that cats in Australia kill nearly 100 million frogs annually, but further research is required to understand the conservation significance of such predation rates.
Implications The present study completed a set of reviews of the impacts of cats on Australian terrestrial vertebrates. Cat predation on Australian frogs is substantial, but is likely to be markedly less than that on Australian reptiles, birds and mammals.
Context Feral cats (Felis catus) are known predators of northern quolls (Dasyurus hallucatus). Management to suppress feral cat densities often uses the poison sodium monofluoroacetate (compound 1080) in baits broadcast aerially. Eradicat® baits have demonstrated efficacy at reducing feral cat densities in some environments. However, these are not registered for use in northern Australia because their risk to non-target northern quolls remains unknown.
Aims We investigated the risks of aerially deployed feral cat Eradicat® baits containing 4.5 mg of the poison 1080 on the survival of free-ranging northern quolls.
Methods The study was conducted over a 20 000-ha area in the Pilbara bioregion in Western Australia. Twenty-one wild northern quolls from a baited area and 20 quolls from a nearby reference area were fitted with radio-collars, and their survivorship was compared following the aerial deployment of over 9700 feral cat baits. Survivorship of quolls was assessed before and after the baiting campaign.
Key results Five radio-collared quolls died at the baited area; four mortalities were due to feral cat predation, and the cause of one death was uncertain. At the reference area, seven radio-collared quolls were confirmed dead; three mortalities were due to feral cat predation, two from wild dog predation, and the cause of death of two could not be determined. Evidence for sublethal poison impacts on quolls, inferred by monitoring reproductive output, was lacking; average litter size was higher in quolls from the baited area than in those from the unbaited area, and within range of litters reported elsewhere, suggesting that acute effects of 1080 (if ingested) on reproductive success were unlikely.
Conclusions Radio-collared northern quolls survived the trial using Eradicat® baits, and females showed no acute effects of sublethal poisoning on the basis of reproductive output. A lack of quoll deaths attributed to 1080 poisoning suggests that the use of Eradicat® poses a low risk to northern quolls in the Pilbara. Importantly, the high level of mortalities associated with predation by feral cats, and to a lesser extent, canids, validates the threats of these introduced predators on quolls, suggesting that their control in areas where quolls are present is likely to be beneficial for the recovery of this species.
Implications Land managers aiming to conserve northern quolls in the Pilbara would see conservation benefits if they introduced an operational landscape-scale feral cat baiting program using Eradicat® baits, with appropriate monitoring.
Context Feral cats pose a significant threat to wildlife in Australia and internationally. Controlling feral cats can be problematic because of their tendency to hunt live prey rather than be attracted to food-based lures. The Felixer grooming trap was developed as a targeted and automated poisoning device that sprays poison onto the fur of a passing cat, relying on compulsive grooming for ingestion.
Aims We conducted a field trial to test the effectiveness of Felixers in the control of feral cats in northern South Australia where feral cats were present within a 2600-ha predator-proof fenced paddock.
Methods Twenty Felixers were set to fire across vehicle tracks and dune crossings for 6 weeks. Cat activity was recorded using track counts and grids of remote camera traps set within the Felixer Paddock and an adjacent 3700-ha Control Paddock where feral cats were not controlled. Radio-collars were placed on six cats and spatial mark–resight models were used to estimate population density before and after Felixer deployment.
Key results None of the 1024 non-target objects (bettongs, bilbies, birds, lizards, humans, vehicles) that passed a Felixer during the trial was fired on, confirming high target specificity. Thirty-three Felixer firings were recorded over the 6-week trial, all being triggered by feral cats. The only two radio-collared cats that triggered Felixers during the trial, died. Two other radio-collared cats appeared to avoid Felixer traps possibly as a reaction to previous catching and handling rendering them neophobic. None of the 22 individually distinguishable cats targeted by Felixers was subsequently observed on cameras, suggesting death after firing. Felixer data, activity and density estimates consistently indicated that nearly two-thirds of the cat population was killed by the Felixers during the 6-week trial.
Conclusions Results suggest that Felixers are an effective, target-specific method of controlling feral cats, at least in areas in which immigration is prevented. The firing rate of Felixers did not decline significantly over time, suggesting that a longer trial would have resulted in a higher number of kills.
Implications Future studies should aim to determine the trade-off between Felixer density and the efficacy relative to reinvasion.
Leigh-Ann Woolley, Brett P. Murphy, Hayley M. Geyle, Sarah M. Legge, Russell A. Palmer, Chris R. Dickman, Tim S. Doherty, Glenn P. Edwards, Joanna Riley, Jeff M. Turpin, John C. Z. Woinarski
Context Recent global concern over invertebrate declines has drawn attention to the causes and consequences of this loss of biodiversity. Feral cats, Felis catus, pose a major threat to many vertebrate species in Australia, but their effect on invertebrates has not previously been assessed.
Aims The objectives of our study were to (1) assess the frequency of occurrence (FOO) of invertebrates in feral cat diets across Australia and the environmental and geographic factors associated with this variation, (2) estimate the number of invertebrates consumed by feral cats annually and the spatial variation of this consumption, and (3) interpret the conservation implications of these results.
Methods From 87 Australian cat-diet studies, we modelled the factors associated with variation in invertebrate FOO in feral cat-diet samples. We used these modelled relationships to predict the number of invertebrates consumed by feral cats in largely natural and highly modified environments.
Key results In largely natural environments, the mean invertebrate FOO in feral cat dietary samples was 39% (95% CI: 31–43.5%), with Orthoptera being the most frequently recorded order, at 30.3% (95% CI: 21.2–38.3%). The highest invertebrate FOO occurred in lower-rainfall areas with a lower mean annual temperature, and in areas of greater tree cover. Mean annual invertebrate consumption by feral cats in largely natural environments was estimated to be 769 million individuals (95% CI: 422–1763 million) and in modified environments (with mean FOO of 27.8%) 317 million invertebrates year−1, giving a total estimate of 1086 million invertebrates year−1 consumed by feral cats across the continent.
Conclusions The number of invertebrates consumed by feral cats in Australia is greater than estimates for vertebrate taxa, although the biomass (and, hence, importance for cat diet) of invertebrates taken would be appreciably less. The impact of predation by cats on invertebrates is difficult to assess because of the lack of invertebrate population and distribution estimates, but cats may pose a threat to some large-bodied narrowly restricted invertebrate species.
Implications Further empirical studies of local and continental invertebrate diversity, distribution and population trends are required to adequately contextualise the conservation threat posed by feral cats to invertebrates across Australia.
Context There is an increasing awareness that feral cats play a key role in driving the ongoing decline of small mammals across northern Australia; yet, the factors that control the distribution, abundance and behaviour of feral cats are poorly understood. These key knowledge gaps make it near-impossible for managers to mitigate the impacts of cats on small mammals.
Aims We investigated the environmental correlates of feral cat activity and abundance across the savanna woodlands of Melville Island, the larger of the two main Tiwi Islands, northern Australia.
Methods We conducted camera-trap surveys at 88 sites, and related cat activity and abundance to a range of biophysical variables, either measured in the field or derived from remotely sensed data.
Key results We found that feral cat activity and abundance tended to be highest in areas characterised by severe disturbance regimes, namely high frequencies of severe fires and high feral herbivore activity.
Conclusions Our results have contributed to the growing body of research demonstrating that in northern Australian savanna landscapes, disturbance regimes characterised by frequent high-severity fires and grazing by feral herbivores may benefit feral cats. This is most likely to be a result of high-severity fire and grazing removing understorey biomass, which increases the time that the habitat remains in an open state in which cats can hunt more efficiently. This is due to both the frequent and extensive removal, and longer-term thinning of ground layer vegetation by severe fires, as well as the suppressed post-fire recovery of ground layer vegetation due to grazing by feral herbivores.
Implications Management that reduces the frequency of severe fires and the density of feral herbivores could disadvantage feral cat populations on Melville Island. A firm understanding of how threatening processes interact, and how they vary across landscapes with different environmental conditions, is critical for ensuring management success.
Context. Feral domestic cats (Felis catus) have contributed to substantial loss of Australian wildlife, particularly small- and medium-sized terrestrial mammals. However, mitigating cat impacts remains challenging. Understanding the factors that facilitate coexistence between native prey and their alien predators could aid better pest management and conservation actions.
Aims. We estimated feral cat density, examined the impact of habitat cover on long-nosed potoroos (Potorous tridactylus tridactylus), and assessed the spatial and temporal interactions between cats and potoroos in the ‘Bluegums’ area of French Island, south-eastern Australia.
Materials and methods. We operated 31 camera stations across Bluegums for 99 consecutive nights in each of winter 2018 and summer 2018/19. We used a spatially explicit capture–recapture model to estimate cat density, and two-species single-season occupancy models to assess spatial co-occurrence of cats and potoroos. We assessed the influence of vegetation cover and cat activity on potoroo activity by using a dynamic occupancy model. We also used image timestamps to describe and compare the temporal activities of the two species.
Key results. Bluegums had a density of 0.77 cats per km2 across both seasons, although this is a conservative estimate because of the presence of unidentified cats. Cats and long-nosed potoroos were detected at 94% and 77% of camera stations, respectively. Long-nosed potoroo detectability was higher in denser vegetation and this pattern was stronger at sites with high cat activity. Cats and potoroos overlapped in their temporal activity, but their peak activity times differed.
Conclusions. Feral cat density at Bluegums, French Island, is higher than has been reported for mainland Australian sites, but generally lower than in other islands. Long-nosed potoroos were positively associated with cats, potentially indicating cats tracking potoroos as prey or other prey species that co-occur with potoroos. Temporal activity of each species differed, and potoroos sought more complex habitat, highlighting possible mechanisms potoroos may use to reduce their predation risk when co-occurring with cats.
Implications. Our study highlighted how predator and prey spatial and temporal interactions, and habitat cover and complexity (ecological refuges), may influence the ability for native prey to coexist with invasive predators. We encourage more consideration and investigation of these factors, with the aim of facilitating more native species to persist with invasive predators or be reintroduced outside of predator-free sanctuaries, exclosures and island safe havens.
Context The niche reduction hypothesis (NRH) predicts that the realised niche of declining species is reduced by threats that are mediated by environmental, biotic and evolutionary processes, explaining why species decline in some locations but not others. The critically endangered central rock-rat (CRR) survives only in rugged mountain range habitat in central Australia and is highly vulnerable to cat predation. We predicted that cat density and ranging behaviour, and, hence, predation risk, is mediated by habitat complexity, thus explaining the mechanism maintaining the CRR refuge.
Aims We sought to determine whether cat densities were lower in the rugged CRR refuge than in an adjacent valley dominated by less complex rocky habitats and no longer occupied by CRRs.
Methods We installed arrays of camera traps along two parallel mountain ranges in the refuge and in the intervening valley habitats. We identified uniquely patterned individual cats and compared spatially explicit capture–recapture (SECR) models to evaluate our hypothesis that cat density varies with topographic complexity.
Key results The dominant effect in all models was the significant negative relationship between cat detection probability and fine-scale topographic ruggedness. Two of the best three SECR models indicated lower cat densities and relative home-range sizes in the refuge than in the valley. In total, 17% of cats were detected in both habitat types.
Conclusions We found some evidence that cat density and home-range size were mediated by habitat complexity. Further, the negative relationship between cat detection probability and topographic complexity suggests that cats spend less time foraging in CRR refuge habitat.
Implications Cat management programs, aimed at reducing predation pressure on the CRR, must include the refuge and surrounding habitats to control cats that pose a threat to CRR subpopulations.
Context Feral cats have been identified as a key threat to Australia’s biodiversity, particularly in arid areas and tropical woodlands. Their presence, abundance and potential impacts in rainforest have received less attention.
Aims To investigate the distribution and diet of feral cats (Felis catus) in upland rainforest of the Wet Tropics.
Methods We collated available occurrence records from the Wet Tropics, and data from upland camera-trapping surveys over an 8-year period, to assess geographic and elevational distribution of feral cats in the bioregion. We also assessed the diet of feral cats from scats collected at upland sites.
Key results Feral cats are widespread through the Wet Tropics bioregion, from the lowlands to the peaks of the highest mountains (>1600 m), and in all vegetation types. Abundance appears to vary greatly across the region. Cats were readily detected during camera-trap surveys in some upland rainforest areas (particularly in the southern Atherton Tablelands and Bellenden Ker Range), but were never recorded in some areas (Thornton Peak, the upland rainforest of Windsor Tableland and Danbulla National Park) despite numerous repeated camera-trap surveys over the past 8 years at some of these sites. Scat analysis suggested that small mammals comprise ∼70% of the diet of feral cats at an upland rainforest site. Multivariate analysis could not detect a difference in mammal community at sites where cats were detected or not.
Conclusions Feral cats are widespread in the Wet Tropics and appear to be common in some upland areas. However, their presence and abundance are variable across the region, and the drivers of this variability are not resolved. Small mammals appear to be the primary prey in the rainforest, although the impacts of cats on the endemic and threatened fauna of the Wet Tropics is unknown.
Implications Given their documented impact in some ecosystems, research is required to examine the potential impact of cats on Wet Tropics fauna, particularly the many upland endemic vertebrates. Studies are needed on (1) habitat and prey selection, (2) population dynamics, and (3) landscape source–sink dynamics of feral cats in the Wet Tropics.
Context. Introduced predators, especially cats, are a major cause of extinction globally. Accordingly, an extensive body of literature has focussed on the ecology and management of feral cats in continental and island systems alike. However, geographic and climatic gaps remain, with few studies focusing on rainforests or tropical islands of the south-western Pacific.
Aims. We aimed to estimate cat densities and elucidate activity patterns of cats and sympatric birds and mammals in tropical island rainforests. We hypothesised that cat activity would be most influenced by the activity of introduced rodents and ground-dwelling birds that are predominant prey on islands.
Methods. We used camera traps to detect feral cats, pigs, rodents and birds on four tropical islands in the south-western Pacific. We used spatial capture–recapture models to estimate the abundance and density of feral cats. Relative abundance indices, and temporal overlaps in activity were calculated for feral cats, pigs, rodents, and birds. We used a generalised linear model to test for the influence of pig, rodent, and bird abundance on feral cat abundance.
Key results. The species most commonly detected by our camera traps was feral cat, with estimated densities between 0.31 and 2.65 individuals km−2. Pigs and introduced rodents were the second- and third-most commonly detected fauna respectively. Cat activity was bimodal, with peaks in the hours before dawn and after dusk. Cat abundance varied with site and the abundance of rodents.
Conclusions. Feral cats are abundant in the tropical rainforests of our study islands, where one bird and two mammal species are now presumed extinct. Introduced rodents possibly amplify the abundance and impacts of feral cats at our sites. Peak cat activity following dusk did not clearly overlap with other species detected by our camera traps. We postulate cats may be partly focussed on hunting frogs during this period.
Implications. Cats are likely to be a major threat to the highly endemic fauna of our study region. Management of feral cats will benefit from further consideration of introduced prey such as rodents, and their role in hyperpredation. Island archipelagos offer suitable opportunities to experimentally test predator–prey dynamics involving feral cats.
Context Feral cats (Felis catus) are a significant threat to wildlife in Australia and globally. In Australia, densities of feral cats vary across the continent and also between the mainland and offshore islands. Densities on small islands may be at least an order of magnitude higher than those in adjacent mainland areas. To provide cat-free havens for biodiversity, cat-control and eradication programs are increasingly occurring on Australian offshore islands. However, planning such eradications is difficult, particularly on large islands where cat densities could vary considerably.
Aims In the present study, we examined how feral cat densities vary among three habitats on Kangaroo Island, a large Australian offshore island for which feral cat eradication is planned.
Methods Densities were compared among the following three broad habitat types: forest, forest–farmland boundaries and farmland. To detect cats, three remote-camera arrays were deployed in each habitat type, and density around each array was calculated using a spatially explicit capture–recapture framework.
Key results The average feral cat density on Kangaroo Island (0.37 cats km−2) was slightly higher than that on the Australian mainland. Densities varied from 0.06 to 3.27 cats km−2 and were inconsistent within broad habitat types. Densities were highest on farms that had a high availability of macropod and sheep carcasses. The relationship between cat density and the proportion of cleared land in the surrounding area was weak. The total feral cat population of Kangaroo Island was estimated at 1629 ± 661 (mean ± s.e.) individuals.
Conclusions Cat densities on Kangaroo Island are highly variable and may be locally affected by factors such as prey and carrion availability.
Implications For cat eradication to be successful, resources must be sufficient to control at least the average cat density (0.37 cats km−2), with additional effort around areas of high carcass availability (where cats are likely to be at a higher density) potentially also being required.
Context Fenced reserves from which invasive predators are removed are increasingly used as a conservation management tool, because they provide safe havens for susceptible threatened species, and create dense populations of native wildlife that could act as a source population for recolonising the surrounding landscape. However, the latter effect might also act as a food source, and promote high densities of invasive predators on the edges of such reserves.
Aims Our study aimed to determine whether activity of the feral cat is greater around the edges of a fenced conservation reserve, Arid Recovery, in northern South Australia. This reserve has abundant native rodents that move through the fence into the surrounding landscape.
Methods We investigated (1) whether feral cats were increasingly likely to be detected on track transects closer to the fence over time as populations of native rodents increased inside the reserve, (2) whether native rodents were more likely to be found in the stomachs of cats caught close to the reserve edge, and (3) whether individual cats selectively hunted on the reserve fence compared with two other similar fences, on the basis of GPS movement data.
Key results We found that (1) detection rates of feral cats on the edges of a fenced reserve increased through time as populations of native rodents increased inside the reserve, (2) native rodents were far more likely to be found in the stomach of cats collected at the reserve edge than in the stomachs of cats far from the reserve edge, and (3) GPS tracking of cat movements showed a selection for the reserve fence edge, but not for similar fences away from the reserve.
Conclusions Invasive predators such as feral cats are able to focus their movements and activity to where prey availability is greatest, including the edges of fenced conservation reserves. This limits the capacity of reserves to function as source areas from which animals can recolonise the surrounding landscape, and increases predation pressure on populations of other species living on the reserve edge.
Implications Managers of fenced conservation reserves should be aware that increased predator control may be critical for offsetting the elevated impacts of feral cats attracted to the reserve fence.
Context Feral cats are invasive predators of small and medium-sized fauna throughout Australia. The only broad-scale population-management technique for feral cats currently available in Australia is poison baiting. As poison baits for feral cats must be surface-laid, this can lead to the unintended exposure of non-target species consuming the baits. Encapsulation of a toxin within a robust, controlled-release pellet implanted within the meat lure (the combination of which is termed the Curiosity® bait) substantially reduces the potential risk to non-target species. Para-aminopropiophenone (PAPP) has been shown to be an effective toxin to which cats are highly susceptible.
Aims The present study aimed to measure the efficacy of encapsulating PAPP toxin in a controlled-release pellet on feral cats in a pen situation and to document the observed behaviours through the toxication process.
Methods Pen trials with captive cats were undertaken to document efficacy of encapsulating PAPP toxin in a controlled-release pellet and to assess the behaviours during toxicosis. These behaviours inform an assessment of the humaneness associated with the Curiosity bait using a published relative humaneness model.
Key results The trials demonstrated a 95% consumption of the toxic pellet and observed the pattern of behaviours exhibited during the intoxication process. There was a definitive delay in the onset of clinical signs and death followed at ∼185 min after the first definitive sign. The humaneness using the relative humaneness model was scored at ‘mild suffering’.
Conclusions The encapsulating PAPP toxin in a controlled-release pellet for feral cats is effective. The feral cats display a range of behaviours through the toxication process, and these have been interpreted as mild suffering under the relative humaneness model.
Implications The documented efficacy and behaviours of encapsulating PAPP toxin in a controlled-release pellet provides knowledge of how the PAPP toxin works on feral cats, which may assist in decision-making processes for conservation land managers controlling feral cats and whether to incorporate the use of the Curiosity® bait into existing management techniques.
Georgia E. Garrard, Alexander M. Kusmanoff, Richard Faulkner, Chathuri L. Samarasekara, Ascelin Gordon, Alice Johnstone, Isaac R. Peterson, Nooshin Torabi, Yan Wang, Sarah A. Bekessy
Context. Feral cats (Felis catus) pose a significant threat to Australia’s native species and feral cat control is, therefore, an important component of threatened species management and policy. Australia’s Threatened Species Strategy articulates defined targets for feral cat control. Yet, currently, little is known about who is engaged in feral cat control in Australia, what motivates them, and at what rate they are removing feral cats from the environment.
Aims. We aim to document who is engaging in feral cat control in Australia, how many cats they remove and to estimate the number of feral cats killed in a single year. Furthermore, we seek to better understand attitudes towards feral cat control in Australia.
Methods. We used a mixed methods approach combining quantitative and qualitative techniques. Feral cat control data were obtained from existing data repositories and via surveys targeting relevant organisations and individuals. A bounded national estimate of the number of feral cats killed was produced by combining estimates obtained from data repositories and surveys with modelled predictions for key audience segments. Attitudes towards feral cat control were assessed by exploring qualitative responses to relevant survey questions.
Key results. We received information on feral cat control from three central repositories, 134 organisations and 2618 individuals, together removing more than 35 000 feral cats per year. When including projections to national populations of key groups, the estimated number of feral cats removed from the environment in the 2017–2018 financial year was 316 030 (95% CI: 297 742–334 318).
Conclusions. Individuals and organisations make a significant, and largely unrecorded, contribution to feral cat control. Among individuals, there is a strong awareness of the impact of feral cats on Australia’s biodiversity. Opposition to feral cat control focussed largely on ethical concerns and doubts about its efficacy.
Implications. There is significant interest in, and commitment to, feral cat control among some groups of Australian society, beyond the traditional conservation community. Yet more information is needed about control methods and their effectiveness to better understand how these efforts are linked to threatened species outcomes.
Context. Feral cat is a favoured food item in some Australian Indigenous communities. We describe how cats are hunted and whether cat hunting can contribute to the persistence of threatened species.
Aims. To determine whether cat hunting by expert trackers has the potential to be an effective method of managing predation impacts on threatened species at key sites.
Methods. We recorded all cats captured on the Kiwirrkurra Indigenous protected area (Kiwirrkurra IPA) over a 5-year period by offering incentive payments for hunters to report their catch. For a subset of hunts, we measured the duration and distance of the hunt. We compared the frequency of occurrence of cat tracks in 2-ha track plots between the hunting zone and more remote, unmanaged areas. At a finer scale, we compared cat presence at bilby burrows inside and outside the hunting zone.
Key results. In all, 130 cats were removed from the Kiwirrkurra IPA from 2014 to 2019. Hunts took an average of 62 min to complete and a team of four hunters could catch up to four cats in a single day. Although cats still occurred throughout the hunting zone, we found that cat detections at track plots were less likely in the areas where cats were hunted. Long-term data suggest that threatened species have persisted better in areas where there is an active presence of hunters.
Conclusions. Cat hunting by Indigenous tracking experts is an efficient method of despatching cats at localised sites. Following footprints on foot facilitates the targeting of individual cats that are hunting at threatened species burrows. More rigorous studies are required to determine whether cat hunting significantly reduces predation on threatened species, or whether there are other co-benefits of maintaining a presence of hunters in the landscape (such as fine-scale fire management) that are more important for the persistence of vulnerable prey.
Implications. Wherever open sandy substrates occur, there is potential to employ Indigenous expert trackers to assist with the removal of problem cats, such as, for example, to complete cat eradication inside fenced reintroduction sites, or at times of peak prey vulnerability, such as breeding events or after bushfires.
Context Significant resources have been devoted to the control of introduced mesopredators in Australia. However, the control or removal of one pest species, such as, for example, the red fox (Vulpes vulpes), may inadvertently benefit other invasive species, namely feral cats (Felis catus) and rabbits (Oryctolagus cuniculus), potentially jeopardising native-species recovery.
Aims To (1) investigate the impact of a large-scale, long-term fox-baiting program on the abundance of foxes, feral cats and introduced and native prey species in the Flinders Ranges, South Australia, and (2) determine the effectiveness of a short time period of cat removal in immediately reducing feral cat abundance where foxes are absent.
Methods We conducted an initial camera-trap survey in fox-baited and unbaited sites in the Flinders Ranges, to quantify the impact of fox baiting on the relative abundance of foxes, feral cats and their prey. We then conducted a secondary survey in sites where foxes were absent, following an intensive, but short, time period of cat removal, in which 40 cats were shot and killed.
Key results No foxes were detected within baited sites, but were frequently detected in unbaited sites. We found a corresponding and significant increase in several native prey species in fox-baited sites where foxes were absent. Feral cats and rabbits were also more frequently detected within baited sites, but fox baiting did not singularly predict the abundance of either species. Rather, feral cats were less abundant in open habitat where foxes were present (unbaited), and rabbits were more abundant within one predominantly open-habitat site, where foxes were absent (fox-baited). We found no effect of short-term cat removal in reducing the local abundance of feral cats. In both camera-trap surveys, feral cat detections were positively associated with rabbits.
Conclusions Long-term fox baiting was effective in fox removal and was associated with a greater abundance of native and introduced prey species in the Flinders Ranges. To continue to recover and conserve regional biodiversity, effective cat control is required.
Implications Our study showed fox removal has likely resulted in the local release of rabbits and an associated increase in cats. Because feral cat abundance seemingly fluctuated with rabbits, we suggest rabbit control may provide an alternative and more effective means to reduce local feral cat populations than short-term removal programs.
Context. Cats are the definitive or primary host for pathogens that cause diseases in people and livestock. These cat-dependent diseases would not occur in Australia if cats had not been introduced, and their ongoing persistence depends on contacts with cats. Toxoplasma gondii is a protozoan parasite that cycles between cats and any other warm-blooded animals. People infected by T. gondii may appear asymptomatic, or have a mild illness, or experience severe, potentially lethal symptoms; the parasite may also affect behaviour and mental health. T. gondii is also a major contributor to spontaneous abortion in sheep and goats. Two species of Sarcocystis, another genus of protozoan parasite, cycle through cats and sheep, causing macroscopic cysts to form in sheep tissues that reduce meat saleability. Toxocara cati, the cat roundworm, causes minor illnesses in humans and livestock, and the bacterium Bartonella henselae causes cat scratch disease, an infection that can be contracted by people when scratched or bitten by cats carrying the pathogen.
Aims. We estimated the economic costs of cat-dependent pathogens in Australia.
Methods. We collated national and global data on infection rates, health and production consequences.
Key results. We estimated the costs of two cat-dependent diseases (toxoplasmosis, cat scratch disease) in people at AU$6.06 billion (plausible range AU$2.11–10.7 billion) annually, and the costs to livestock production from toxoplasmosis and sarcocystosis at AU$11.7 million (plausible range AU$7.67–18.3 million). Most of the human health costs are due to the associations between T. gondii and higher rates of traffic accidents and mental illness in people. The causality behind these associations remains uncertain, so those costs may be overestimated. Conversely, our estimates are incomplete, infections and illness are under-reported or misdiagnosed, and our understanding of disease outcomes is still imperfect, all of which make our costs underestimated.
Conclusions. Our analysis suggests that substantial benefits to public health and livestock production could be realised by reducing exposure to cats and breaking parasite transmission cycles.
Implications. Reducing feral cat populations in farming and urban areas, reducing the pet cat population and increasing rates of pet cat containment could help reduce the burden of cat-dependent diseases to people and livestock.
Context Feral cats have benefitted from effective control of foxes in south-western Australia and, consequently, their impact on some threatened mammal species has increased. Control of feral cats in the region can be enhanced by use of the Eradicat® cat bait, but its impact on non-target animal populations requires investigation before widespread use.
Aims The aim of the present study was to determine through field trials whether consumption of Eradicat® baits by resident red-tailed phascogales, following a broadscale baiting operation to control feral cats, was sufficiently frequent to cause significant rates of mortality in wild populations of phascogales.
Methods Nine radio-tagged red-tailed phascogales were monitored through an Eradicat® baiting event to determine their survival. Removal and consumption of toxic and non-toxic rhodamine B-labelled baits by a range of species were monitored with camera traps and by subsequent trapping of red-tailed phascogales and other mammals to sample whiskers for evidence of rhodamine uptake.
Key results Although some phascogales showed interest in baits and sometimes moved them from the deposition site, all radio-tagged phascogales survived for at least 1 week after baiting, by which time very few or no baits remained. Examination of whiskers sampled from individuals exposed to rhodamine-labelled baits showed that consumption of non-toxic Eradicat® baits by phascogales was negligible; only one phascogale of 62 sampled showed any rhodamine banding.
Conclusions The present study provided no evidence that red-tailed phascogales in the study region are at risk from an Eradicat® baiting episode in autumn.
Implications The risk to red-tailed phascogale populations through the use of Eradicat® baiting to control cats in their habitat in the Great Southern region of Western Australia is likely to be low. Further research to elucidate any impact of repeated baiting on populations of this species at several locations is recommended.
Context Feral cat predation has had a significant impact on native Australian fauna in the past 200 years. In the early 2000s, population monitoring of the western ground parrot showed a dramatic decline from the pre-2000 range, with one of three meta-populations declining to very low levels and a second becoming locally extinct. We review 8 years of integrated introduced predator control, which trialled the incorporation of the feral cat bait Eradicat® into existing fox baiting programs.
Aims To test the efficacy of integrating feral cat control into an existing introduced predator control program in an adaptive management framework conducted in response to the decline of native species. The objective was to protect the remaining western ground parrot populations and other threatened fauna on the south coast of Western Australia.
Methods A landscape-scale feral cat and fox baiting program was delivered across south coast reserves that were occupied by western ground parrots in the early 2000s. Up to 500 000 ha of national parks and natures reserves were baited per annum. Monitoring was established to evaluate both the efficacy of landscape-scale baiting in management of feral cat populations, and the response of several native fauna species, including the western ground parrot, to an integrated introduced predator control program.
Key results On average, 28% of radio-collared feral cats died from Eradicat® baiting each year, over a 5-year period. The results varied from 0% to 62% between years. Changes in site occupancy by feral cats, as measured by detection on camera traps, was also variable, with significant declines detected after baiting in some years and sites. Trends in populations of native fauna, including the western ground parrot and chuditch, showed positive responses to integrated control of foxes and cats.
Implications Landscape-scale baiting of feral cats in ecosystems on the south coast of Western Australia had varying success when measured by direct knockdown of cats and site occupancy as determined by camera trapping; however, native species appeared to respond favourably to integrated predator control. For the protection of native species, we recommend ongoing baiting for both foxes and feral cats, complemented by post-bait trapping of feral cats. We advocate monitoring baiting efficacy in a well designed adaptive management framework to deliver long-term recovery of threatened species that have been impacted by cats.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere