Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Harry A. Moore, Yawuru Country Managers, Bardi Jawi Oorany Rangers, Nyul Nyul Rangers, Nykina Mangala Rangers, Lesley A. Gibson, Martin A. Dziminski, Ian J. Radford, Ben Corey, Karen Bettink, Fiona M. Carpenter, Ruth McPhail, Tracy Sonneman, Bruce Greatwich
Context. The decline of the greater bilby (Macrotis lagotis), or Ngarlgumirdi (Yawuru), like other critical-weight range Australian mammals, is believed to be primarily due to the synergetic impacts of predation by feral cats and foxes, habitat disturbance caused by large introduced herbivores, and increases in the frequency and intensity of wildfires. Although it has been demonstrated that low-intensity prescribed burning mosaics in some habitats have the potential to benefit mammals, including Ngarlgumirdi, by creating habitat with sufficient vegetation cover, the contributions of specific fire-mosaic attributes to Ngarlgumirdi persistence remain unclear.
Aims. To elucidate the impacts of fire-mosaic attributes on the occupancy of Ngarlgumirdi on the Dampier Peninsula.
Methods. We used 2-ha sign-plot data collected by four Indigenous Ranger groups, in combination with 20 years of satellite-derived fire-history information to investigate the multiscale impacts of fire attributes on Ngarlgumirdi and feral cats (Felis catus) on the Dampier Peninsula in the West Kimberley region, a large, unfenced landscape in the most fire-prone section of the Ngarlgumirdi’s current range.
>Key results. We found that Ngarlgumirdi was more common in areas that had a higher proportion of habitat that had not burnt for at least 3 years, whereas feral cats were less prevalent in these areas. Similarly, Ngarlgumirdi was less likely to occur in landscapes affected by frequent fires, whereas cats were more common there.
Conclusions. Our findings have highlighted the importance of decreasing fire frequency and increasing the extent of long-unburnt habitats (>3 years) for preserving Ngarlgumirdi on the Dampier Peninsula and mitigating ecological damage inflicted by feral cats. Findings were consistent across spatial scales (1-, 3-, 5- and 10-km radius from each monitoring site).
Implications. These results have demonstrated the potential of fire management to increase native species resilience in the absence of direct feral cat control methods. Further, they support a recent cross-tenure initiative led by Traditional Owners to implement fire management that aims to reduce large, frequent high-severity wildfires and increase areas of long-unburnt vegetation on the Dampier Peninsula.
Context. GPS tags have revolutionised the field of wildlife spatial ecology by providing a large number of animal location datapoints at a very fine spatial scale. Although GPS tags have been used on large animals for several decades, it is only recently that technological advances have allowed lightweight GPS tags to be deployed on small animals with limited travel distances. Importantly, factors such as canopy cover, topography, and tag orientation can affect the ability of GPS tags to obtain satellite fixes, which can subsequently affect the accuracy of recorded locations.
Aims. If not corrected for, biases in location data obtained from GPS tags could lead to erroneous inferences regarding animals’ habitat use, home-range sizes, and movement paths, which could reduce the effectiveness of conservation efforts based on such inferences.
Methods. Here, we used a double-sampling method (i.e. GPS tags and ground-truthing with radio-telemetry) and quantified the effects of habitat characteristics and data screening on the accuracy of location data obtained from GPS tags deployed both in stationary tests and on wild eastern box turtles and spotted turtles, which co-occur at our study sites but use different habitat types.
Key results. We found that canopy cover reduced both the number and accuracy of locations obtained from GPS tags, that dense ground vegetation decreased the fix success rate of GPS tags, and that GPS tags were ineffective when submerged underwater. We further showed that using a simple method to screen data and exclude low-accuracy locations is essential if locations obtained from GPS tags are used to make inferences about a species’ habitat use or spatial ecology.
Conclusions. Screening data to reduce location error is particularly important for animals with small home-range sizes and short travel distances because a small number of erroneous locations can introduce substantial bias in inferences regarding a species’ space use.
Implications. We encourage researchers to report measures of error (i.e. location error, horizontal dilution of precision, number of satellites received) for GPS location data and to employ data-screening methods to exclude low-accuracy locations and improve the reliability of published animal location data, and the inference drawn there from.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere